
To what extent does discounting ‘hot’ climate models improve the1

predictive skill of climate model ensembles?2

Abigail McDonnell∗1, Adam Michael Bauer2, and Cristian Proistosescu1,3
3

1Department of Climate, Meteorology, and Atmospheric Sciences, University of Illinois4

Urbana-Champaign, 1301 W Green St, Urbana IL 618015

2Department of Physics, University of Illinois Urbana-Champaign, 1110 W Green St, Loomis Laboratory,6

Urbana, IL 618017

3Department of Earth Sciences and Environmental Change, University of Illinois Urbana-Champaign,8

Urbana, IL 618019

Forthcoming in Earth’s Future10

September 20, 202411

Abstract12

It depends. The Intergovernmental Panel on Climate Change’s (IPCC) Assessment Re-13

port Six (AR6) took a step towards ending so-called ‘model democracy’ by discounting climate14

models that are too warm over the historical period (i.e., models that ‘run hot’) when making15

projections of global temperature change. However, the IPCC did not address whether this16

procedure is reliable for other quantities. Here, we explore the implications of weighting climate17

models according to their skill in reproducing historical global-mean surface temperature using18

three other climate variables of interest: annual average precipitation change, regional average19

temperature change, and regional average precipitation change. We find that the temperature-20

based weighting scheme leads to an improved prediction of global average precipitation, though21

we show that this prediction could be overconfident. On regional scales, we find a heterogeneous22

pattern of error reduction in future regional precipitation. This stands in sharp contrast with23
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the broad regional pattern of error reduction in future temperature projections, though we do24

find regions where error is not significantly reduced. Our results demonstrate that practitioners25

using weighted climate model ensembles for climate projections must take care when weighting26

by temperature alone, lest they produce unreliable climate projections that result from an in-27

appropriate weighting procedure.28

29
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Plain Language Summary31

Climate model ensembles are widely used for risk assessment. However, a few of the most re-32

cent generation climate models ‘run hot’ in the historical period, widening the spread of future33

global warming. The Intergovernmental Panel on Climate Change’s (IPCC) sixth assessment re-34

port presents a number of weighting schemes to address this ‘hot model’ problem, each of which35

discount models that are ‘too hot’ in the historical period. However, it is unclear if this procedure36

is reliable for other quantities of interest. Here we explore the impact of this procedure on global37

average precipitation change, regional temperature change, and regional precipitation change. We38

find that while this scheme improves the prediction of global precipitation change and generally39

improves the prediction of regional temperature, it does not broadly improve regional predictions40

of future precipitation change. We conclude that users of climate model output must be careful41

when applying a global temperature-based weighting scheme in regional impact studies.42

Key points43

• Using historical warming to weight climate models can improve global predictions of annual44

temperature change and precipitation change.45

• Using past warming to weight future climate projections has varied effects on regional error46

reduction depending on the metric of interest.47

• Climate model end-users should use caution when applying a weighting scheme to avoid biased48

or overconfident assessments of climate impacts.49
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1 Introduction50

The Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016) includes nu-51

merous updates to physical processes that have substantially broadened the range of equilibrium52

climate sensitivity (ECS) to include values much higher than previous CMIP generations (Zelinka53

et al., 2020; Forster et al., 2020). These more sensitive models also simulate more end-of-century54

warming and have been criticized for ‘running hot’ (Hausfather et al., 2022). ‘Hot models’ in CMIP655

generally have two common biases: (i) they simulate too much warming over the last four decades56

because their transient climate response (TCR) is outside generally accepted values (Hausfather57

et al., 2022), and (ii) they have an unrealistically large estimate of ECS relative to state-of-the-art58

estimates (Sherwood et al., 2020).59

In response to this bias, the Intergovernmental Panel on Climate Change’s (IPCC) Sixth Assess-60

ment Report (AR6) started down-weighting ‘hot models’ when providing projections of global-mean61

temperature changes (Eyring et al., 2021). This model weighting method ended so-called ‘model62

democracy’ present in previous CMIP generations (Knutti, 2010; Brunner et al., 2019), in which63

all models are given equal weight in computing the ensemble average of a given climate variable64

(i.e., end-of-century temperature rise). To summarize the IPCC’s approach, they used a percentile-65

by-percentile average of three distinct weighting schemes (Tokarska, 2020; Liang et al., 2020; Ribes66

et al., 2021), each of which discount models that are ‘too hot’, to form a constrained future pro-67

jection of relative global surface air temperature change, and then utilized an emulator to generate68

future projections (see Figure 4.11 and supplemental data in Eyring et al., 2021). One method69

present in AR6, Liang et al. (2020), show that their weighting approach reduces overall bias in70

future global-mean temperature projections (via cross validation), and therefore provides a more71

precise estimation of global-mean warming.72

It is unclear, however, if weighting climate model projections by historical global-mean warming73

trends has skill for quantities other than global-mean warming, specifically those that may not be74

well correlated with global temperature changes (Hausfather et al., 2022). For example, while global75

temperature changes have been shown to correlate with global precipitation changes, the correlation76

appears to be strong only in the polar regions (Shiogama et al., 2022), suggesting that weighted77

ensembles might not offer a more skillful prediction for precipitation in the mid- and low-latitudes.78
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AR6 itself offers no guidance for weighting quantities other than global temperature. The79

proposed workaround – using global warming levels – is unfortunately not informative for any80

estimates of impacts or risk that require time-horizons, broadly classified as ‘transition risks’ (Bauer81

et al., 2024b). For example, adjustment costs (Lucas, 1967; Mussa, 1977) and economic inertia (Ha-82

Duong et al., 1997) link the cost of abating CO2 emissions to the rate of abatement and have been83

shown to imply much more aggressive near-term climate policies (Campiglio et al., 2022; Bauer84

et al., 2024a). Therefore, the rate of warming – which directly influences the optimal rate of85

abatement in integrated assessment models with adjustment costs – is an important consideration86

for policymakers. Worse still, it is unclear if a better prediction globally implies a uniformly87

better prediction on regional scales, or if the bulk of the precision is gained in locations relatively88

uninteresting for a specific impact analysis (i.e., in polar regions, as opposed to the low- and mid-89

latitudes).90

Here we demonstrate the issues of weighting models according to their skill in reproducing91

global-mean surface temperature using three other climate variables of interest: annual average92

precipitation, regional temperature change, and regional precipitation change. We use a weighting93

scheme that is most similar to Liang et al. (2020), which itself expands on the weighting scheme94

outlined in Knutti et al. (2017). The general approach is to compute model weights using a model’s95

ability to replicate historical warming, while also accounting for model interdependency (see the96

Supplementary Materials for more details). The ability for a given weighting scheme to reduce out-97

of-sample prediction error is evaluated via a perfect model test (Supplemental Materials), which98

can be summarized as: (i) a model is randomly chosen as truth, and referred to as the ‘pseudo-99

observation’; (ii) the other models are weighted based on their ability to reproduce the historical100

period in the pseudo-observation; (iii) the weighted ensemble projections are compared with 21st101

century predictions from the model chosen as pseudo-observations. This procedure is carried out102

with each ensemble member as the pseudo-observation once to produce the distribution of ‘perfect103

model test errors’ seen in Figure 1 and to compute the change in RMSE in Figure 2.104
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Figure 1: Perfect model test error and relative forecast error distributions. Panel a
shows a histogram of the perfect model test errors in projections of 21st global warming using
weighted (red) and unweighted (blue) distributions. Panel b is as Panel a, but for the error in
global precipitation projections using temperature-based weights. Panel c shows the histogram of
relative forecast error for global temperature projections using temperature-based weights. Panel
d is as Panel c but for global precipitation projections using temperature-based weights.
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2 Results105

2.1 Global Analysis106

We first apply the temperature-based weighting scheme to projections of 21st century global aver-107

age temperature change, which is analogous to AR6’s analysis. We show the distribution of perfect108

model test errors in Figure 1a, which reflects the distribution of error for all pseudo-observation109

choices. We find that applying the temperature-based weights reduces root mean squared error110

(RMSE) between the weighted and unweighted distribution by 25.4% and reduces the relative fore-111

cast error (RFE; the ratio of the weighted ensemble variance and the unweighted ensemble variance,112

see the Supplementary Materials) by 18%. This reduction in RMSE suggests that weighting mod-113

els by their ability to reproduce historical warming results in a more reliable prediction of future114

global-mean temperature. Likewise, a reduction in RFE implies that the spread of the weighted115

future projection is less than the unweighted ensemble, which naturally follows from the weight-116

ing scheme discounting models that are dissimilar to the global temperature trend of the chosen117

pseudo-observation. Our findings are consistent with those found in Liang et al. (2020), and cor-118

roborate the idea that historical temperature trends can be used to constrain global temperature119

projections.120

Next, we apply the historical temperature-based weighting scheme to global precipitation projec-121

tions. We find that weighting future precipitation projections by historical warming trends reduces122

RMSE by 17.8% and decreases RFE by 55%. This suggests that temperature-based weights are123

useful in constraining global-mean precipitation projections, but could introduce overconfidence; in-124

deed, the RFE is reduced three times more in the precipitation projections than in the temperature125

projections. The temperature-based weighting scheme likely decreases global precipitation RMSE126

and RFE because global temperature trends and global precipitation trends have been shown to be127

well-correlated (Shiogama et al., 2022). This correlation may be explained by the fact that models128

may agree on global precipitation changes (Held and Soden, 2006), while nonetheless disagreeing129

on the specific pattern of precipitation and precipitation change.130

Judging by the results for the global-mean, one may be tempted to conclude that historical131

temperature trends are a reasonable predictor of future precipitation anomalies in CMIP6. This132

result is consistent with past work framing historical temperature as a possible emergent constraint133
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Figure 2: Regional decomposition of RMSE reduction and variance explained by
weighting metric. Panel a shows the spatial distribution of the relative RMSE between the
raw ensemble mean and the historical temperature trend-derived weighting technique, averaged
over each pseudo-observation choice. Here, a value less than (greater than, resp.) unity implies
a more (less, resp.) precise prediction using the weighted ensemble mean as opposed to the un-
weighted ensemble mean. Panel b shows the variance in future regional temperature anomalies
that is explained by historical global temperature trends. Panel c is as Panel a, but for precipita-
tion projections weighted by historical temperature trends. Panel d shows the variance in future
regional precipitation anomalies explained by historical global temperature trends. Note that high
levels of variance explained should correspond to a relative RMSE of less than one.

on future global average precipitation projections (Shiogama et al., 2022). But does it follow134

that climate model practitioners will find this procedure useful in their impact analysis for, say,135

an individual city? To answer this question, we next look at regional decompositions of RMSE136

changes.137

2.2 Regional Analysis138

We find that weighting models by global-mean historical warming trends produces a well-defined139

pattern of RMSE reduction for regional warming projections (Figure 2a). This pattern can be140

explained by the robust pattern of correlation between the ensemble spread in global-mean 21st141

century temperature trends and the ensemble spread in regional 21st century temperature trends142

(Figure 2b). The high degree of correlation over most of the world implies that future regional143

temperature trends are robustly predicted by future global-mean temperature trends, which are144

themselves constrained by historical global-mean temperature trends.145
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The locations where regional projections are least improved by weighting correspond to locations146

where the correlation between global and regional trends is low. These are locations where surface147

temperature is strongly controlled by local ocean processes, such as parts of the Southern Ocean148

and the North Atlantic. The implication is that in these regions the uncertainty in local warming149

trends is not primarily determined by uncertainty in global warming, but rather by regional ocean150

dynamics.151

In stark contrast, we find that weighting regional precipitation trends by how well models152

reproduce historical global warming does not lead to wide-spread reduction in RMSE (Figure 2c).153

This finding can largely be attributed to the lack of correlation between global-mean temperature154

trends and regional-mean precipitation trends over the 21st century (Figure 2d) outside of the polar155

regions.156

This low degree of correlation suggests that outside the polar regions, uncertainty in regional157

precipitation is not dominated by the same processes that determine uncertainty in global warming158

trends. Indeed, the future regional precipitation in polar regions is likely well-correlated with global159

temperature because it is primarily ‘thermodynamically controlled’, whereas changes in regional160

precipitation in the mid-latitudes and tropics are ‘dynamically controlled’ and as such the non-polar161

regional precipitation trends cannot be easily linked to global temperature rise (Emori and Brown,162

2005). This could also explain why regional RMSE change in future precipitation projections is163

heterogeneous, while global projections are improved: while models all agree that precipitation164

increases with temperature (Held and Soden, 2006), they might disagree on the (dynamically-165

controlled) location of precipitation changes. Moreover, owing to dynamical differences of how166

individual models represent precipitation, regional precipitation patterns may not be robust prior167

to weighting, meaning the changes after weighting are also not robust.168

In any event, the lack of predictive power of historical global temperature anomalies for regional169

precipitation projections make this metric a poor choice to weight climate models on regional170

scales (at least, for precipitation projections). As a quantitative example, average RMSE over the171

contiguous United States (CONUS) in future temperature is reduced by 20%, while average RMSE172

in future precipitation over the CONUS is increased by 8%. (We provide the same calculations for173

17 additional regions in the Supplementary Materials and find similar results.)174
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3 Discussion175

Our regional analysis shows that care must be taken when applying a historical temperature-based176

weighting scheme to other climate variables, particularly for regional impact analysis. Weighting177

regional temperature projections by global historical temperature projections leads to a reduction178

in bias for most regions. However, the same is absolutely not true when applying these weights to179

regional precipitation projections. Indeed, we find that many regions actually have a higher RMSE180

in future precipitation projections using the weighted mean as opposed to the unweighted mean181

(see blue regions in Figure 2c). It also follows that a global reduction in bias cannot be conflated182

with a useful, uniform regional reduction in error; indeed, just because error decreases globally does183

not imply it also decreases in every city or municipality, or even in most cities or municipalities.184

We conclude that, based on these results, the skill of a temperature-based weighting scheme for185

global temperature projections cannot be generalized across different climate metrics.186

These results have important implications for both climate model practitioners and climate187

scientists. For practitioners, it is important to take caution when choosing a weighting scheme so188

as to avoid an overconfident or biased prediction. Näıvely applying a temperature-based weighting189

method, such as those adopted by the IPCC, to other climate model variables can lead to misleading190

results and worse regional predictions than using an unweighted mean, as shown in Figure 2. (Note191

we also explore a historical precipitation-based analog to the IPCC’s temperature-based weighting192

scheme in the Supplementary Materials and find similar conclusions.) In other words, temperature-193

based weighting methods cannot, and should not, be considered general for any regional metrics194

other than temperature projections without verification on a case-by-case basis. Note that applying195

an unweighted mean in many cases may still not be preferable, and one would ideally use a weighting196

scheme that is optimized for the region and variable of interest. Our work would suggest that a197

reliable first-step would be to determine the degree to which a candidate global weighting metric198

correlates to the regional climate variable of interest (i.e., our calculations in Figure 2b,d) to probe199

if a weighted projection would improve bias in a climate model ensemble. Note that our approach200

is generalizable to the case where multiple candidate weighting metrics correlate well with a desired201

climate variable (see the Supplementary Materials).202

More work needs to be done to build out robust, bespoke weighting schemes for different metrics203
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of climate change, particularly those that are important for climate impact analysis. Weighting204

schemes for multi-faceted climate risk assessment, where multiple variables need to be predicted, are205

likely to be particularly challenging. Different impact variables could correlate well with different206

weighting metrics, but using different weighting schemes for each impact variable could lead to207

inconsistent predictions. If it is possible to define a single weighting metric that correlates well208

with each climate variable of interest, we recommend that weighting schemes are built around209

this weighting metric. Additional approaches to address this issue have been suggested, such210

as recent work focusing on choosing climate models based on independence, performance, and211

spread (Merrifield et al., 2023); expanding on this framework or developing novel approaches would212

fill a need for model weighting and selection for specific tasks, particularly on regional spatial213

scales and near-term timescales, where reliable risk assessment is urgently needed (Condon, 2023).214

Climate scientists should actively engage with climate model practitioners to lend expertise and215

insight into the best practices for weighting climate ensembles, lest highly consequential decisions216

be made based on ill-suited (though well-intentioned) weighted climate model ensembles.217
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S1 Methods21

S1.1 Data22

We use CMIP6 model historical data and SSP5–8.5 CMIP6 projections that include temperature23

and precipitation time series for the period of 1850-2099. The SSP5–8.5 scenario is used because24

it is expected to have the highest signal-to-noise ratio of forced response to internal variability.25

Predictive skill is expected to be worse in scenarios with weaker forcing due to the increased26

importance of unforced natural variability. The temperature ensemble consists of 27 members27

and the precipitation ensemble consists of 26 members. The data was downloaded from a public28

repository (https://esgf-data.dkrz.de/search/cmip6-dkrz/) and processed using the Pangeo stack29

and Python libraries such as xarray and gcsfs. We removed the seasonal cycle from the data30

and took the area-weighted global average over the 1850–2099 time period to compute the global31

average time series used in Figure 1 (see main text) and each calculation thereafter.32

Table S1: CMIP6 data information.

Activity Climate Model Experiment Member Table

CMIP, ScenarioMIP CanESM5 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP AWI-CM-1-1-MR ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP EC-Earth3-Veg ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP CMCC-CM2-SR5 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP TaiESM1 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP IPSL-CM6A-LR ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP NESM3 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP CAMS-CSM1-0 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP FGOALS-f3-L ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP GFDL-CM4 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP CMCC-ESM2 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP MRI-ESM2-0 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP INM-CM5-0 ssp585, historical r1i1p1f1 Amon

Continued on next page
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Table S1 – Continued from previous page

Activity Climate Model Experiment Member Table

CMIP, ScenarioMIP BCC-CSM2-MR ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP INM-CM4-8 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP EC-Earth3 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP IITM-ESM ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP CAS-ESM2-0 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP CESM2-WACCM ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP EC-Earth3-CC ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP E3SM-1-1 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP GFDL-ESM4 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP MIROC6 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP FIO-ESM-2-0 ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP EC-Earth3-Veg-LR ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP KACE-1-0-G ssp585, historical r1i1p1f1 Amon

CMIP, ScenarioMIP NorESM2-MM ssp585, historical r1i1p1f1 Amon

S1.2 Relative forecast error33

To quantify the degree to which applying a weighting scheme reduces variance in an ensemble34

projection, we introduce the relative forecast error (RFE), defined as35

RFE :=
σ2
w

σ2
uw

=
⟨x2⟩w − ⟨x⟩2w
⟨x2⟩ − ⟨x⟩2

, (0.1)

where σ2
w is the variance of the weighted projection and σ2

uw is the variance of the unweighted36

projection. An RFE of more than one implies the weighted projection is more uncertain than the37

unweighted projection; an RFE of less than one indicates that the spread in the weighted ensemble38

is less than that of the unweighted projection.39
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S1.3 Weighting scheme40

S1.3.1 Theoretical framework41

We follow the approach of Liang et al. (2020) and calculate a given model’s weight by determining42

the distance between each ensemble member and a chosen ‘pseudo-observation’. The pseudo-43

observation is treated as a “true” observation in the spirit of a perfect model test (Liang et al.,44

2020). The weighting scheme depends on two characteristics of the model ensemble: (i) the ability45

of a given model to reproduce the pseudo-observation, and (ii) model interdependence (see Knutti46

et al. (2017) for further discussion).47

Formally, a set of ensemble weights can be computed using the following prescription. Consider48

a set of climate models M, and allow each member i ∈ M to have a set of weighting metrics, L,49

(i.e., temperature, precipitation, etc.) given by ξ
(ℓ)
i ∈ L, with trend over the historical period given50

by ξ̃
(ℓ)
i,hist. Let the chosen pseudo-observation be indexed by i∗ ∈ M. Then the weight for a given51

model i ∈M with chosen pseudo-observation i∗ ∈M is described by,52

w
(i∗)
i =

e
−D2

i,i∗/σ
2
D

1 +
∑M

j ̸=i e
−S2

i,j/σ
2
S

, (0.2)

where53

Di,i∗ =

√√√√√∑
ℓ∈L

 ξ̃
(ℓ)
i,hist − ξ̃

(ℓ)
i∗,hist

med
(
S
(ℓ)
i,i∗

)
2

(0.3)

is the normalized L2-distance in trend-space between the weighting metric trend(s) of the chosen54

model and pseudo-observation for the historical period,55

S
(ℓ)
i,j =

√√√√√∑
ℓ∈L

 ξ̃
(ℓ)
i,hist − ξ̃

(ℓ)
j,hist

med
(
S
(ℓ)
i,j

)
2

, (0.4)

is the L2-distance between two models i, j ∈ M (with i ̸= j ̸= i∗) normalized by each median56

med
(
S
(ℓ)
i,j

)
in trend-space, M := |M| is the number of models in the ensemble, and σD, σS are57

shape parameters. A smaller value of σD will assign a substantive amount of weight to a small58

number of models that are similar to pseudo-observation. Conversely, large values of σD is similar59

to an unweighted ensemble. σS functions similarly, but for model interdependence. In this case,60
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Figure S1: Weighting Scheme Example. Panels a–b show pseudo-observation impact on
weighted temperature and precipitation projections. Panel a shows weighted (yellow line) and
unweighted (blue line) mean temperature projections with weights based on historical temperature
trends for the chosen pseudo-observation (pink line). The entire ensemble is shown in the grey lines.
Panel b is as Panel a, but for precipitation projections. Note all panels show anomalies above the
historical mean.

we have ξ
(ℓ)
i = Ti, that is, we are only weighting by global temperature; likewise, L = {Ti}.61

To produce the distribution of perfect model test errors seen in Figure 1 (see main text), we62

choose a member of our climate model ensemble as the pseudo-observation. We then, using (0.2),63

compute the ensemble weights for that choice of pseudo-observation, and apply them to the re-64

maining ensemble members to compute the weighted mean. An example of this being applied for65

a single pseudo-observation choice is shown in Figure S1. The perfect model test error for the66

chosen pseudo-observation is the difference between end-of-century warming relative to the his-67

torical period summarized in Table S2 for the pseudo-observation and weighted mean projection.68

Carrying out this process recursively, where each climate model ensemble member is chosen as the69

pseudo-observation once, produces the distribution of perfect model test errors seen in Figure 1.70

The same procedure using the unweighted mean for every choice of pseudo-observation gives the71

distribution of perfect model test errors for the unweighted mean. The RMSE reduction is found72

by comparing the RMSE of these two distributions, using the usual definition for RMSE.73

S1.3.2 Calibration of weighting scheme74

We define the historical period as X−2014 where X is the year with maximum correlation between75

the historical trend of the weighting metric (i.e., historical global average temperature) and future76
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Figure S2: Correlation between historical and future trends for different definitions of
the historical period. Shown is the correlation coefficient (r2) between historical temperature
trends and future temperature trends (green line); historical temperature trends and future precip-
itation trends (red line) as a function of what lower bound is chosen for the historical period; i.e.,
for different choices of X in the time period X − 2014.

Table S2: Defining the historical period. Listed is the lower bound X of the historical
period X − 2014 for each climate variable and weighting metric. The historical lower bound is the
value along the abscissa of Figure S2 where the maximum correlation between climate variable and
weighting metric occurs.

Climate variable Weighting metric Historical lower bound

Temperature Temperature 1960
Precipitation Temperature 1960

trends for the variable being weighted (i.e., future temperature projections) (see Figure S2). Our77

results are summarized in Table S2 for each climate variable and weighting metric.78

To calibrate the optimal values for the shape parameters σD and σS , we perform a gridded79

optimization routine inspired by the calibration scheme in Knutti et al. (2017) (see their Figure80

3c) that we outline in Algorithm S1. The idea is to choose some threshold for the fraction of81

pseudo-observations that should fall within the predicted range of our weighted mean, which we82

call F ∗. Then for each possible pair of (σD, σS), we cycle through choices of pseudo-observation,83

compute the weighted mean and corresponding standard deviation of the prediction, and ask if the84

pseudo-observation lies within the ±2σ predicted range. This approach is repeated for the entire85
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(σD, σS) grid.86

The result of this procedure is shown in Figure S3, where we show the percentage of pseudo-87

observations that lie within the predicted range on our (σD, σS) grid. We then choose our op-88

timal shape parameters (σ∗
D, σ

∗
S) by minimizing the L2-norm subject to the fraction of pseudo-89

observations that were predicted are above F ∗. We choose F ∗ ∼ .89 for our temperature-based90

weights.91

Algorithm S1 Calibration of shape parameters σD and σS .

Data: A set ofM climate models, where M := |M| is the number of models in the ensemble.

Initialize: Choose a climate variable of interest (i.e., temperature) given by ζ and weighting
metric (i.e., historical temperature) given by ξ. Define the historical period and future period.
Remove seasonal cycle and take area-weighted global average of both the climate variable and
weighting metric. Compute trends over historical period; define ξ̃i,hist as the historical trend
in the weighting metric for model i ∈ M. Define ζ̄i,fut as the average of the climate variable
over the future period for model i ∈ M. Choose a σ̄D and σ̄S , and define ΣD := [0, σ̄D] and
ΣS := [0, σ̄S ] with coarseness θ > 0. Then ΣD ×ΣS creates a grid of possible (σD, σS) pairs with
θ2 total candidates. Choose a minimum fraction of pseudo-observations that must be predicted
by ensemble weighting, given by F ∗.

Ensure: σ̄D, σ̄S , θ > 0, 0 ≤ F ∗ ≤ 1

for all (σD, σS) ∈ ΣD × ΣS do
Ni∗ ← 0 ▷ Initialize number of pseudo-observations in predicted range
for all i∗ ∈M do ▷ Iterate through each choice of pseudo-observation

⟨ζ⟩w ←
∑

i∈M\{i∗}

w
(i∗)
i ζ̄i,fut ▷ Using Eqn. (0.2) for w

(i∗)
i

⟨ζ2⟩w ←
∑

i∈M\{i∗}

w
(i∗)
i ζ̄2i,fut

σζ ←
√
⟨ζ2⟩w − ⟨ζ⟩2w

if ⟨ζ⟩w − 2σζ ≤ ζ̄i∗,fut ≤ ⟨ζ⟩w + 2σζ then
Ni∗ ← Ni∗ + 1 ▷ Increment Ni∗

end if
end for
FσD,σS ← Ni∗/M ▷ Translate number to fraction

end for
Γ∗ ← {(σD, σS) ∈ ΣD × ΣS : FσD,σS ≥ F ∗} ▷ Region of candidate optimal (σD, σS) pairs

(σ∗
D, σ

∗
S)← argmin

(σD,σS)∈Γ∗

√
σ2
D + σ2

S ▷ Minimize L2-norm for (σD, σS) pairs on Γ

Output: σ∗
D, σ

∗
S ▷ Optimal values of σD and σS
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Figure S3: Heatmap of shape parameter calibration for temperature-based weights.
Shown is percentage of pseudo-observations that are predicted in our weighted mean approach for
each σD and σS combination. The blue star shows the optimal values of σD and σS .
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Figure S4: Correlation between historical and future trends for different definitions of
the historical period. Shown is the correlation coefficient (r2) between historical precipitation
trends and future precipitation trends as a function of what lower bound is chosen for the historical
period; i.e., for different choices of X in the time period X − 2014.

S2 Precipitation-based analog to IPCC’s temperature-based weight-92

ing scheme93

We here show the results of using a precipitation-based analog of our temperature-based weighting94

scheme for weighting future global and regional precipitation projections. To be clear, this scheme95

follows the same logic as our temperature-based scheme, but rather than weighting models by96

their ability to reproduce historical temperature trends, we use historical precipitation trends. The97

calibration scheme is exactly the same as we laid out in the Methods section above (see Figures S498

and S5).99

For our global analysis, we find that global average precipitation RMSE is reduced by 9.23%100

using precipitation-based weights. See Figure S6 for the histogram of errors using this scheme.101

This implies that historical precipitation trends are a skillful predictor of future global precipitation102

trends, though less skillful than historical temperature trends (see the main text).103

For the regional analysis, we find that there exists a heterogeneous pattern of RMSE reduction,104

similar to the temperature-based weights in the main text (Figure S7). We again find that this owes105

to the degree of correlation between global historical precipitation trends and regional precipitation106
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Figure S5: Heatmap of shape parameter calibration for precipitation-based weights.
Shown is percentage of pseudo-observations that are predicted in our weighted mean approach for
each σD and σS combination. The blue star shows the optimal values of σD and σS .
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Figure S6: Perfect model test error distributions for global precipitation using histor-
ical precipitation-based weights.

projections varying substantially across space. Importantly, we find that there is a lack of precision107

gains in the low- and mid-latitudes, making global historical precipitation trends a poor metric for108

model weighting in regional impact analysis.109

Table S3: Mean RMSE Change by Region

Country Temperature Precipitation

Afghanistan 0.74 1.12

Australia 0.89 1.05

Brazil 0.93 1.14

Chile 0.81 1.11

China 0.85 1.07

Democratic Republic of Congo 1.02 0.94

Greenland 0.83 0.95

Continued on next page
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Table S3 – Continued from previous page

Country Temperature Precipitation

India 0.91 1.04

Indonesia 0.76 1.11

Mexico 0.80 1.12

Nepal 0.89 1.09

Russia 0.73 0.89

South Africa 0.76 1.07

Turkey 0.78 0.97

United Kingdom 0.91 1.08

United States of America 0.80 1.08
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Figure S7: Regional decomposition of RMSE reduction and variance explained by
weighting future precipitation projections using precipitation-based weights. Panel a
shows the spatial distribution of the relative RMSE between the raw ensemble mean and our
historical precipitation trend-derived weighting technique. Here, a value less than (greater than,
resp.) unity implies a more (less, resp.) precise prediction using the weighted ensemble mean
as opposed to the unweighted ensemble mean. Panel b shows the variance in future regional
precipitation anomalies that is explained by historical global precipitation trends. Note that high
levels of variance explained should correspond to a relative RMSE of less than one.
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