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1 Introduction23

Climate change’s impact on the economy first gained prominence in the economics literature some 3024

years ago, when the first climate-economic Integrated Assessment Model (IAM) calculated the cost25

of a marginal ton of carbon dioxide (CO2) emissions to society, coined the ‘Social Cost of Carbon’26

(SCC) (Nordhaus, 1992). IAMs have since taken center stage in climate policy discussions, with the re-27

sulting SCC estimates being utilized as benchmarks by companies and governments worldwide (World28

Bank, 2021). To date the most prominent IAM by far – the dynamic integrated climate-economy,29

or DICE – evaluates climate change impacts within the context of a standard Ramsey growth econ-30

omy (Nordhaus, 2017; Barrage and Nordhaus, 2023). In this approach, a global social planner considers31

tradeo↵s between emitting CO2 and incurring damages both now and, largely, in the future, versus32

abating CO2 emissions now at some cost. Performing a benefit-cost analysis results in a presently-low33

and rising optimal SCC over time, with significant global average warming by 2100. Recent e↵orts have34

yielded comparatively higher SCC estimates; Rennert et al. (2022), for example, calculates a central35

SCC of $185 but did not explore the optimal control problem of weighing the benefits and costs of36

abating CO2 emissions.1 It is notable that DICE’s optimal warming projections are significantly larger37

than each warming target – 1.5 �C and 2 �C by 2100 – established in the 2015 Paris Agreement. While38

this inconsistency has called into question the authority of such models in the climate policy discussion39

to some (Pindyck, 2013; Stern, 2013), DICE has been made consistent with a warming target of 1.540

�C with alternative, updated damages and discount rate modules (Hänsel et al., 2020).41

A limitation of DICE is that it lacks a comprehensive representation of decision-making under risk42

and uncertainty, a core feature of many ‘alternative’ climate-economic models (Cai et al., 2016; Cai43

and Lontzek, 2019; Daniel et al., 2019; Barnett et al., 2020). This is important, as climate change44

projections are inherently probabilistic, with low probability, extreme impact outcomes presenting the45

most significant risk to the climate-economic system (Weitzman, 2009). The inherently unpredictable46

nature of the impacts of climate change has led some to think of climate policy as a form of “insur-47

ance” to be taken out against high climate damages (Weitzman, 2012). Conventional IAMs do not48

allow for such considerations in determining their policy projections. Put in financial-economic terms:49

conventional IAMs do not allow individuals to ‘hedge’ against climate impacts.50

To address this, there have been considerable advances in climate-economic modeling that include51

the e↵ects of risk and uncertainty on the SCC and on optimal policy responses to climate change;52

see Lemoine and Rudik (2017) for a comprehensive review, while Cai and Lontzek (2019) and Lemoine53

(2021) represent seminal works for including climate-related risk in IAMs.2 We contribute to this54

extensive literature by introducing the carbon asset pricing model AR6 (CAP6), a climate-economy55

IAM that builds on previous financial asset pricing climate-economy models (Daniel et al., 2016, 2019).56

Our paper makes three primary contributions. The first is along methodological lines: we distill each57

working group report in the sixth assessment report (AR6) issued by the Intergovernmental Panel on58

Climate Change (IPCC) (Intergovernmental Panel on Climate Change, 2021, 2022a,b) into workable59

1This SCC estimate represents a significant increase from the U.S. Interagency Working Group’s central estimate of
⇠$50 (Committee on Assessing Approaches to Updating the Social Cost of Carbon et al., 2017) and is in line with the
U.S. Environmental Protection Agency’s recent draft estimates that report a central value of $190 (National Center for
Energy Economics, 2022).

2We provide a more thorough literature review in Online Appendix A.
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IAM components.3 This allows our model to be up-to-date with the state-of-the-art calibrations for60

critical model components. Notably, we formulate a new marginal abatement cost curve (MACC) based61

on AR6 data, providing an update to the well-known McKinsey & Company (2013) MACC.62

The second contribution is a computation of optimal carbon prices and associated mitigation policy.63

Following Daniel et al. (2016, 2019), we embed a representative agent in a binomial, path-dependent64

tree that allows for risk assessment to endogenously evolve over time. The agent maximizes the Epstein-65

Zin-Weil utility (Epstein and Zin, 1989; Weil, 1990; Epstein and Zin, 1991) at every node in the tree66

such that the present-day utility is maximized. Agent discount rates are calibrated to be in-line with67

a recent expert elicitation (Drupp et al., 2018) and the U.S. Environmental Protection Agency (EPA)68

latest estimates for the SCC (National Center for Energy Economics, 2022). Notably, we find that the69

optimal expected warming in our EPA-consistent calibrations is in line with the 2100 warming targets70

established in the Paris agreement. We find that even if we were pessimistic about the cost of mitigation71

estimates provided by the IPCC, the EPA-consistent calibration of CAP6 would still support limiting72

warming to less than 2 �C by 2100, with a discount rate of 2% or lower.473

In computing optimal mitigation strategies, we capture uncertainty associated with both climate74

damages and global temperature rise. For damages, we capture both parametric uncertainty inherent75

to a given damage function, as well as structural uncertainty associated with di↵erent damage function76

shapes; in other words, in addition to Monte Carlo sampling damage levels for a given damage function,77

we also account for the fact that it is di�cult to determine which damage function is correct in the78

first place (Pindyck, 2013; Intergovernmental Panel on Climate Change, 2022a). To our knowledge,79

we are the first to capture this dimension of climate-economic uncertainty. We also account for the80

marginal damages associated with a probabilistic assessment of climate tipping points (Lenton et al.,81

2008; Dietz et al., 2021).82

Our final contribution is a sensitivity analysis that allows us to identify how each exogenous as-83

sumption drives model output. We show that while the expected carbon price depends on the emissions84

baseline, the expected temperature rise, level of CO2 concentrations, and incurred economic damages85

does not. This suggests that our model robustly calculates an economically optimal temperature level86

for a given calibration; the price of actualizing this temperature level varies across baselines, owing87

to assumptions about how much emissions are decreasing independently of the policy implemented in88

CAP6. We find that price uncertainty is dominated by discounting in the near-term and the techno-89

logical growth rate in the far-term. On the other hand, temperature rise, CO2 concentration level, and90

economic damage uncertainty is dominated by discounting for much longer than CO2 prices, as early91

inaction leads to warming that cannot be undone later by spending more on abatement (in the absence92

of significant net-negative emissions or solar geoengineering).93

We proceed by presenting the socio-economic setup of CAP6 in section 2, the climate emulator in94

section 3, and our calibration in section 4. We discuss our results in section 5; section 6 concludes.95

(For section 2, we provide a brief summary paragraph with key equations and figures for readers who96

3 Nielsen-Gammon and Behl (2021) highlight the need and urgency for standardized, state-of-the-art climate and
economic components based on the most up-to-date research for climate-economic modeling.

4This rate is significantly below Barrage and Nordhaus (2023)’s “preferred” rate of 4.5% in 2020, but well within the
range that has emerged as a broad consensus among economists (Council of Economic Advisors, 2017; Drupp et al., 2018;
Newell et al., 2022).
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wish to skip the full technical description of our model components.)97

2 Socio-economic framework98

We consider a representative agent with Epstein-Weil-Zin utility given by (2.1), and embed this in-99

dividual in a binomial tree structure where their utility is maximized. CO2 emissions (without any100

agent mitigation action) follow the shared socio-economic projections used by the IPCC (Figure 2).101

Climate damage functions are calibrated to IPCC working group (WG) II data (see Figure 3) and102

our uncertainty parameterization captures both epistemic and parametric uncertainty in the damage103

functions. Finally, we employ (2.12) as our marginal abatement cost curve (Figure 4) and provide104

two calibrations: our ‘main specification’ based solely on the data in AR6, and the ‘no free lunches’105

calibration, which excludes negative costs in the AR6 data.106

2.1 Economic utility107

CAP6 considers a representative agent with recursive preferences who maximizes their utility through-108

out time. We choose Epstein-Zin-Weil preferences (Epstein and Zin, 1989; Weil, 1990; Epstein and Zin,109

1991), henceforth abbreviated as ‘EZ’, because of their unique feature of separating risk across states110

of time and states of nature. This distinction has been shown to be especially relevant for climate111

economic studies, where risk considerations across di↵erent dimensions are key to the outcome (e.g.,112

Cai and Lontzek, 2019, among many others). The discrete time utility, Ut, of a representative agent113

with EZ preferences is given by114

Ut =
⇣
[1� �]c⇢t + �

⇥
Et

�
U↵
t+1

�⇤⇢/↵⌘1/⇢
, (2.1)

where � := (1 + �)�1 > 0 and � > 0 is the pure rate of time preference (PRTP), ct > 0 is the115

consumption at time t, ⇢ := 1 � 1/� and � > 0 is the elasticity of intertemporal substitution (EIS),116

↵ := 1�  and  > 0 is agent risk aversion (RA), and Et is the expectation operator at time t. When117

↵ = ⇢ (that is, when  = 1/�), (2.1) collapses into the von Neumann and Morgenstern (1947) expected118

utility index. Assuming an exogenous growth rate of consumption g > 0, in the final period occurring119

at time T, the utility is given by120

UT =


1� �

1� �(1 + g)⇢

�1/⇢
cT . (2.2)

Note that, in the EZ framework, risk aversion across time is parameterized by �, whereas risk aversion121

across states of nature is parameterized by  .122

2.1.1 Tree structure123

Following Daniel et al. (2016, 2019), agent utility in CAP6 is optimized within the structure of a124

binomial tree, therefore embedding the representative agent in a finite horizon probability landscape.125

4



Figure 1: Cost of CO2 (panel A) and agent experienced climate damages (panel B) at each node. In
both panels, we highlight the accessible future states of two agents: one in 2150 (pink boxes) and one
in 2030 (gold boxes).

Note: Values are taken from our 2% discount rate featured model run, main specification.
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This follows a standard approach employed in financial economics (Cox et al., 1979), and one useful to126

solve EZ-style models numerically (Epstein and Zin, 1991).127

The binomial tree structure of CAP6 is a representation of a time-evolving two dimensional proba-128

bility distribution of climate damages (see Figure 1 for a schematic). The first dimension is time, while129

the second is “fragility”, the latter of which encodes the potential for high or low climate damages at a130

moment in time. Throughout, we will refer to the fragility coordinate at a time t as ✓t > 0. Framing the131

tree structure as a representation of a two dimensional probability distribution allows for the roles of132

� and  to be clarified: � parameterizes risk aversion along the time dimension, while  parameterizes133

risk aversion along the “fragility” dimension. We choose to orient the fragility coordinate such that134

high (low, resp.) fragility is associated with high (low, resp.) climate damages. By allowing for many135

agent decisions, and thus the generation of numerous nodes, we are able to coarsely represent the space136

of possible fragilities, therefore spanning many possible states of the climate and climate impacts. Note137

that in the limit of infinitely many decisions, fragility is normally distributed owing to every future138

state being equally likely, so as to not bias any outcome (be it sanguine or catastrophic) within the139

model structure.140

This structure allows for agent risk assessment to evolve endogenously; as an example, consider141

two agents, one in 2150 and one in 2030 (see Figure 1). The agent in 2150 has only two future142

states accessible to them from their position in the tree; this represents an individual who knows well143

the impact of the climate on the economy. The agent in 2030 has a significantly higher number of144

future states accessible to them; they know less about how climate change impacts the economy, which145

influences their decision making, as they have to weigh several possible futures with high and low146

climate damages (or “fragility”) all at once.147

This approach has the advantage of being easily computationally tractable, while maintaining a148

structurally endogenous representation of risk and uncertainty resolution. Moreover, it allows for a149

transparent interpretation of model results and ample sensitivity analyses, which enables our variance150

decomposition results in § 5.3.1. However, it does su↵er from drawbacks: more modern (and computa-151

tionally expensive and technically challenging) models are able to solve similar optimization problems152

in continuous-time, on infinite horizons, or both (Bretschger and Vinogradova, 2014; Cai and Lontzek,153

2019; Van Den Bremer and Van Der Ploeg, 2021). These considerations can matter for model results:154

for example, the time horizon used for climate policy models matters owing to the long residency time155

of CO2 in the atmosphere. If one sets the time horizon of the model to 2200, then the net-benefits156

of a unit of CO2 abatement in 2190 would matter less than one in 2020 because the benefits would157

not be given time to materialize. Nevertheless, a number of prominent IAMs used in climate policy158

consider finite horizons (perhaps most notably, the DICE model is solved on a finite horizon, see Nord-159

haus, 2017; Barrage and Nordhaus, 2023) and our model falls into this class. Moreover, our choice to160

truncate the time horizon at 2250 aligns with the time where we assume the world reaches net zero161

emissions without any additional policy in CAP6, which would make, from the policy perspective taken162

in our model, a carbon tax obsolete (see Figure 2).163
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Figure 2: Emissions baselines with their extensions to 2250.

2.1.2 Statement of utility optimization problem164

Consider a representative agent embedded within a path-dependent binomial tree with T decision

periods, leading to 2T � 1 total tree nodes. The individual resides within a standard endowment

economy (Summers and Zeckhauser, 2008), where at every period time t they are given an amount

c̄t > 0 such that c̄t = c̄0(1 + g)t. Without loss of generality, set c̄0 to unity. They cannot consume all

of c̄t, however, owing to both climate change and climate policy. Climate change can cause the agent

to lose some amount of c̄t due to climate damages, Dt � 0. Climate policy allows them to spend some

amount of c̄t to reduce their impact on future climate by mitigating some fraction of emissions xt with

total cost t. The consumption of the agent at each time t 2 {0, 1, 2, ..., T} is determined by

c0 = c̄0 (1� 0(x0)) , (2.3)

ct = c̄t (1� t(xt)) (1�Dt( t, ✓t)) , for t 2 {1, 2, ..., T � 1}, (2.4)

cT = c̄T (1�DT ( T , ✓T )) , (2.5)

where  t is the cumulative CO2 emissions. We choose T = 6 decision periods in all the calculations165

in that follow, with our initial and final year being 2020 and 2250, respectively.5 The net discounted166

EZ-utility is then maximized to obtain the optimal carbon prices and mitigation policies in § 5; see167

Online Appendix B for more details on our optimization.168
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2.2 Emission baselines169

There is considerable uncertainty when choosing a ‘business-as-usual’ emissions scenario for climate-170

economy IAMs (Hausfather and Peters, 2020). One approach is for the emissions to be a result of171

economic output (e.g., Golosov et al., 2014). This approach has the advantage of making the emissions172

baseline endogenous; however, it also tends to exclude important processes relevant to the level and173

rate of fossil fuel emissions, such as friction in the di↵usion of clean energy technologies, which can be174

captured by more sophisticated energy systems IAMs.175

This concern motivates the second approach commonly used by the IPCC, which is to supply a176

given IAM with a stream of CO2 emissions exogenously based on plausible future emissions scenarios.177

The shared socio-economic pathways (SSPs) shown in Figure 2 are an example of this approach,178

where each baseline represents a “storyline” for future global and regional economic development based179

on the level of challenges faced by policymakers in mitigation and adaptation. For example, SSP5180

is a fossil fuel-based development storyline, with high levels of challenge to mitigation (because of181

significant fossil fuel development) and low challenges to adaptation (because of expanded wealth).182

SSP1, on the other hand, is a more sustainable route, with low challenges to both mitigation (because of183

renewable energy expansion) and adaptation (because of equitable growth and investment in education184

and health). Combining these socio-economic settings with an energy system model produces the185

emissions projections seen in Figure 2; see Riahi et al. (2017) for a complete review of the SSP storylines186

and specifics on the underlying assumptions. This approach has been employed by the US Government187

in their computations of the SCC (National Center for Energy Economics, 2022),6, and is our approach188

here. This implies that our optimal carbon taxes are always with reference to the emissions baseline189

we assume; we explore the influence of which emissions baseline we choose on our results in § 5.3.190

We take emissions data for each SSP at times 2020 – 2100 directly from the SSP database,7 and select191

scenarios which span a range of end-of-century radiative forcing amounts. We make one alteration to192

the projections provided in the database: negative emissions are set to zero.8 As our model extends out193

to 2250, we require extensions of the SSPs in the database; we follow the prescription of Meinshausen194

et al. (2020) for each baseline, which assumes that (a) positive fossil fuel emissions and any net-negative195

fossil fuel emissions are ramped down to zero by 2250, (b) land use CO2 emissions are zero by 2150, (c)196

non-fossil fuel greenhouse gas emissions are ramped down by 2250, and (d) land use-related non-CO2197

emissions are held constant after 2100. In reality, it is possible that in the absence of a well-designed198

policy suite that one or more of these assumptions could not hold, which would imply that we are199

underestimating potential emissions levels in the far-future, and thus long-term climate-economic risk;200

we explore the relative influence of which emissions baseline we choose in § 5.3. See Figure 2 for the201

results of our extension procedure.202

5While one may question the coarseness of our time discretization, it has been shown that including more decision
periods in similar models does not significantly a↵ect their output (Coleman et al., 2021).

6Note the US EPA uses the so-called RFF-SPs (Rennert et al., 2022) rather than the SSPs used here.
7See https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10
8This assumption only impacts SSP1–1.9, as SSP1–1.9 makes more optimistic assumptions around backstop technology

than we do in our cost formulation.
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Figure 3: Each of our damage functions by methodology (statistical, structural, and meta-analytic)
as well as the marginal damages owing to tipping points.

Note: In each panel, yellow shows ±1 standard deviation in the damage function, while the blue shaded region

shows ±2 standard deviations. For the end-of-century estimates in panel A, the green region shown ±1 standard

deviation and the salmon shows ±2 standard deviations. The statistical damage function shown assumes SSP2–

4.5.

2.3 Damage functions203

Our climate damage calculation can be broken down into two components: an aggregate climate dam-204

age, owing to the total damages incurred by climate change, and a marginal tipping point climate205

damage, which accounts for damages which are incurred by, for example, permafrost melt.206

2.3.1 Aggregate climate change damages207

Aggregate damages are defined as global damages owing to climate change, and their magnitude is208

estimated in AR6 by WGII (Intergovernmental Panel on Climate Change, 2022a) (see their Figure209

Cross-Working Group Box ECONOMIC.1, panels (a)-(c), p. 16-114). We specify three aggregate210

damage functions: one that is modeled after statistical climate damage modeling e↵orts (Burke et al.,211

2018), one estimated using structural estimation techniques (Rose et al., 2017), and a meta-analysis of212

climate damage estimates (Howard and Sterner, 2017), such that for each we have213

D(T 0) = T 0($1 +$2T
0) (2.6)

where$1,$2 2 R+ are fitted coe�cients. We refer to each of these damage functions by their estimation214

methodology in what follows, i.e., “the statistical damage function” and so on. We supply the fitted215

coe�cients and their uncertainty, as well as a discussion of the qualifications and the limitations of216

each individual damage function we use, in Online Appendix D. We present the data and fitted curves217

in Figure 3 (ft. 9).218

9We present CAP6 output using only one of each damage function, and compare it to when each damage function is
sampled in Online Appendix H.
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2.3.2 Tipping point damages219

In addition to the aggregate damages accrued owing to climate change, an additional damage potential220

exists for climate-related tipping points, such as permafrost melt or Amazon dieback. Previous studies221

parameterize climate tipping points as instantaneous shocks that immediately result in damages (e.g.,222

Lemoine and Traeger, 2016b); however, this is unrealistic, as the consequences of “hitting a tipping223

point” will take time to be fully realized (Kopp et al., 2016; Armstrong McKay et al., 2022). This224

e↵ect was captured by Cai and Lontzek (2019); they found that the presence of climate tipping points225

significantly increases the social cost of carbon.226

A recent analysis allows the e↵ect of a given tipping element to be dynamic over time in an IAM,227

and estimates the marginal damage associated with ten climate tipping points as a function of global228

average temperature (Dietz et al., 2021). This approach has the advantage of aggregating over the229

complex dynamic aspects of tipping points and provides a simple “damage function” for marginal230

damages owing to tipping points. Moreover, this “damage function” implicitly captures the “domino”231

e↵ect of hitting a tipping point (Lemoine and Traeger, 2016b; Cai et al., 2016) in its damage estimates.232

However, our use of this approach has the drawback of not capturing aversion to ambiguity surrounding233

the location of tipping points (Lemoine and Traeger, 2016a), which has been shown to slightly increase234

the stringency of climate policy. This provides some context to our results, as including the e↵ects of235

ambiguity aversion to tipping points would increase the resulting carbon price and optimal mitigation236

level.237

We take this additional “damage function” owing to tipping points, Dtp(T
0), from Dietz et al. (2021)238

(see their Figure 5c), such that the total damages are given by239

Dtot(T
0) = D(T 0) +Dtp(T

0). (2.7)

Note that Dtp(T
0) has the same functional form as the aggregate damage function, i.e., Eqn. (2.6). See240

Figure 3D for a visualization and Table 1 in Online Appendix D for the coe�cients of this damage241

function and corresponding uncertainties.242

2.3.3 Sampling damage function uncertainty243

We sample uncertainty in the damage function in two ways. The first is by sampling the parametric244

uncertainty in each damage function; that is, the uncertainty in the values of $1,$2 in (2.6). The245

distributions of $1,$2 are assumed Gaussian with mean and variance provided in Online Appendix D,246

Table 1. The second source of uncertainty in the damage function pertains to which damage function247

(i.e., statistical, structural, or meta-analytic) we specify in the first place. As the IPCC WGII makes no248

recommendations in this regard, we assign a hyper-parameter in our simulated climate damages that249

randomly chooses a damage function, thus sampling epistemic uncertainty in the damage function.250

This methodology allows us to remain agnostic with respect to which damage function we choose.251
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2.3.4 Calculating damages at a particular decision node252

A representative agent in our model at a given decision node only knows the possible end states which253

can be accessed from their state. They do not know the exact fragility at their own node, or any ✓t254

for t < T , owing to the inherent uncertainty surrounding both the climate system (such as the precise255

value of climate sensitivity) and economic impacts (such as damage functions). Owing to the agent not256

knowing the current fragility, the damages assessed at their decision time are dependent on proxies for257

the relevant damage variables. The two proxies used in our model is the set of possible end states, ⇥258

(which tells us which end states are accessible) and the cumulative CO2 emissions,  t (which tells us259

approximately how warm the world should be, but does not immediately map to the temperature at260

time t owing to uncertainty in the climate sensitivity). These two variables in concert give us a basis261

from which we can interpolate end state climate damages backwards in time to any decision node.262

Moreover, a continually-updating fragility parameter allows the expectation of future damages to co-263

evolve with agent decisions about mitigation, therefore making risk assessment endogenous within our264

modeling structure. We calculate the damage at a given node as a probability-weighted average of the265

current-period damages accessible to each end node across states of fragility, such that266

Dnode( t, ✓t) =
X

✓T2⇥
P (✓T |✓t)Dtot( t, ✓t). (2.8)

2.4 Cost of mitigation267

Calculating the cost of mitigation requires specifying a marginal abatement cost curve (MACC), which268

relates the price of abatement to the fraction of emissions abated. Such a curve will vary depending on269

three factors: (1) the current state of emissions mitigation technologies, which in aggregate represent270

the abatement potential as a function of cost, (2) the availability of a backstop technology, which271

allows for net-negative emissions, and (3) technological advancement, which makes mitigation costs272

cheaper over time (Gillingham and Stock, 2018). We discuss the limitations to our approach in Online273

Appendix E.274

2.4.1 Marginal abatement cost curve estimation275

Estimating MACCs requires a functional relationship between the fraction of emissions abated, x, the276

per-ton tax rate, ⌧ , and the emission pathway, E. We use the most recent estimates for the cost277

of CO2 emission abatement presented in AR6 WGIII (Intergovernmental Panel on Climate Change,278

2022b) (see their Figure SPM.7, p. SPM-50). We make four important assumptions in interpreting the279

data from AR6 WGIII. First, we assume cost estimates are additive, which is not necessarily the case;280

however, we expect changes in costs and abatement potential to be small enough to consider them as281

negligible in this study. Second, we neglect negative costs; that is, whenever WGIII data dictates that282

costs are < $0, we set the cost to zero. Third, for abatement potentials outside the range provided283

by the IPCC, we assume the functional relationship between ⌧ and x established for lower abatement284

potentials holds. Lastly, we assume that the cost of each option is equal to its maximum cost in its285

respective range, i.e., the cost of an option in the IPCC $0–$20 range is assumed to be $20. Taken286

11



Figure 4: Panel A shows the mitigation potential and cost for each methodology given by the IPCC
using their WGIII data. Blue represents zero costs (listed as negative in AR6), yellow is $0-$20 range,
orange is $20-$50, red is $50-$100, and maroon is $100-$200. Panel B shows the fitted marginal
abatement cost curves given by (2.9) and panel C shows the total cost to society given by (2.10) in our
‘main specification’. In panels B–C, solid lines correspond to 2030 MACCs, while dashed lines are 2100
MACCs, assuming an exogenous technological growth rate of 1.5% and no endogenous technological
growth.

Note: In panel A, the abatement methodology label is only on the bar with the most mitigation potential for a

given methodology.
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together, these assumptions make our MACC estimation conservative. We then fit an exponential287

curve to the cost data (see Figure 4A), such that288

⌧(x) = ⌧0
⇣
e⇠x � 1

⌘
, (2.9)

where ⌧0, ⇠ > 0 are constants. To evaluate (2.3)–(2.5), we are interested in the total cost to society,289

(⌧) for each particular tax rate ⌧ , in units of the fraction of 2020 consumption lost. We use the290

envelope theorem to calculate (⌧), such that (see Online Appendix E for the full derivation),291

MACC(x) =
E0⌧0
c2020

✓
e⇠x � 1

⇠
� x

◆
, (2.10)

where c2020 is the 2020 global consumption in billions of 2020 USD, set to $61880 (taken from the292

World Bank10) and E0 is the emissions rate in 2030 in GtCO2 yr�1. A table of fitted values for ⌧0 and293

⇠ for each SSP are provided in Table 3 in Online Appendix E, as well as a calculation for the percent294

of consumption required to abate all emissions. Fits for (2.9) and (2.10) are shown in Figure 4B and295

Figure 4C, respectively.296

2.4.2 Direct air capture technology297

Our model represents direct air capture (DAC) via permitting CO2 removal (National Research Council,298

2015). Net CO2 removal occurs whenever the mitigation exceeds unity; this leads to negative emissions299

and thus net carbon removal from the atmosphere. The price of net carbon removal is a major source300

of uncertainty in assessing future climate policy (Johnson et al., 2017), with estimates ranging from301

$50� $1000 2020 USD per ton of CO2 removed. Regardless of the specific dollar estimates provided in302

the literature, DAC faces a common hurdle: scalability (Intergovernmental Panel on Climate Change,303

2022b). The parameter x in our MACC is the fraction of 2030 emissions abated; therefore, removing304

even a small percentage of these emissions from the atmosphere is equivalent to abating billions of tons305

of CO2 from the atmosphere in short order. The technology to carry out this task is simply unavailable306

at present, and it is unclear when it will become fully mature and available at scale.307

Note that, before mitigation reaches unity, there is some carbon capture and storage that is as-308

sumed to be occurring concurrent with emissions reductions; indeed, by considering the technology-309

by-technology breakdown of the IPCC’s WGIII cost data in Figure 4A, carbon capture and storage310

is placed in the $200 2020 USD tCO2-eq
�1 cost bracket. Hence our inclusion of DAC in our MACC311

formulation represents an abrupt shift from purchasing various abatement technologies (such as solar312

power or equipment to retrofit buildings) to installing exclusively, and at scale, DAC facilities. The313

costs of this process are currently assumed to be rather large (International Energy Agency, 2022).314

However, a breakthrough could certainly occur sometime in the future where DAC becomes deployable315

at scale for a more economically viable cost (for example, as a result of the uncapped subsidies in the316

Inflation Reduction Act of 2022 (Yarmuth, 2022)), which would lower the price of DAC considerably317

and would require a reassessment of our quantitative analysis in § 5.318

In light of these considerations, we take a simple approach to adjusting our cost curve to account319

10https://data.worldbank.org/indicator/NE.CON.TOTL.CD
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for DAC technologies by imposing a DAC premium, ⌧DAC > 0, which is an extra price for carbon320

removal which shifts ⌧0 to ⌧0 ! ⌧0 + ⌧DAC . Throughout, we essentially price out to-scale DAC leading321

to net-negative emissions before 2100. This alters our MACC cost curve (2.10) when x > 1, such that322

MACC(x) =

8
>>>>><

>>>>>:

E0⌧0
c2020

✓
e⇠x � 1

⇠
� x

◆
, 0  x  1,

E0(⌧0 + ⌧DAC)

c2020

✓
e⇠x � 1

⇠
� x

◆
, x > 1.

(2.11)

2.4.3 Technological progress323

Technological progress in CAP6 is captured by allowing the cost of mitigation to society MACC(x)324

to decrease in time as technological proficiency makes mitigation cheaper. Technological progress325

can occur in two ways: (1) exogenously, where general technological improvement independent of326

agent choices make mitigation cheaper, and (2) endogenously, where if a given individual invests in327

mitigation early, the cost of mitigation goes down more over time (Acemoglu et al., 2012). The328

exogenous (endogenous, resp.) technology advancement rate is given by '0 � 0 ('1 � 0, resp.).329

Incorporating these factors into our cost curve results in our final expression for the cost of mitigation330

to society,331

t(xt) = MACC(xt) (1� '0 � '1Xt)
t�10 , (2.12)

where332

Xt :=

R t
0 x(⇣)E(⇣)d⇣

 (t)
, (2.13)

is the weighted average mitigation up to time t (ft. 11).333

We note that our formulation of endogenous technological change – or “learning by doing” – follows a334

formulation akin to Wright’s law (Wright, 1936), where the reduction in costs of mitigation technologies335

is proportional to the total deployed mitigation, as opposed to directed technical change in the spirit336

of Acemoglu et al. (2012) or Lans Bovenberg and Smulders (1995). This is because in our formulation,337

the social planner chooses levels of abatement, which (via proxy) corresponds to the deployment of338

clean technologies. As more and more renewable technologies are “deployed” by the planner, Wright’s339

law would suggest that their costs will decrease. Hence the Wright’s law-based formulation is the most340

natural way to incorporate endogenous technological change into our model. This framework has the341

additional advantage of allowing us to only focus on carbon tax levels rather than including additional342

policy instruments, such as renewable energy subsidies.343

2.4.4 “No free lunches” calibration344

Estimating the cost of CO2 abatement is notoriously challenging. The cost estimates presented above345

are static, in the sense that they represent the costs of the lifetime of the project and, for example, ignore346

11Note the technological growth factor is o↵set by ten years as the cost data from AR6 is for 2030 technologies and our
first model period is in 2020.
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spillover e↵ects (Intergovernmental Panel on Climate Change, 2022b). However, static estimates fail347

to capture the impact of the costs (or savings) associated with a given project that outlive the project348

lifetime itself (Gillingham and Stock, 2018). Such considerations lead some to argue that costs should349

not be estimated from the “bottom up” as done here, but rather from the “top down.” “Top down”350

estimates generally paint a more pessimistic picture than the “bottom up” methods, positing that the351

cost of abating CO2 emissions is actually larger than adding up the cost of each individual option,352

owing to inertia and friction in the economic system, a set of barriers typically summarized as the353

“energy paradox” (Ja↵e and Stavins, 1994).354

To address this concern, we provide an alternative calibration of CAP6 that is more closely aligned355

to “top-down” MACCs (see, e.g., Barrage and Nordhaus, 2023) by adjusting the MACC to exclude356

zero-cost abatement technologies; indeed, it has been shown that the degree to which one believes357

in zero-cost mitigation explains much of the di↵erence between “top-down” and “bottom-up” MACC358

estimates (Kotchen et al., 2023). We do so by shifting all of the mitigation potential in the IPCC359

dataset up by one cost bracket; for example, the zero cost methodologies (the blue bars in Figure 4)360

now have $20 2020 USD tCO2-eq
�1 lifetime cost, and so on. The highest cost abatement technologies361

are set to cost $400 2020 USD tCO2-eq
�1. We coin this MACC calibration as the “no free lunches”362

MACC, and provide its parameter values in Online Appendix E, Table 3. (ft. 12).363

3 Climate model364

Here we present the climate component of our model. We map CO2 emissions to the temperature365

anomaly above preindustrial levels, denoted as T 0, using the transient climate response to emissions366

(TCRE) (Damon Matthews et al., 2021). The TCRE is defined as a linear scale factor � > 0 that maps367

the cumulative CO2 emissions,  (t) :=

Z t

0
E(⇣)d⇣, to temperature, where E(t) is the emissions baseline.368

The physical basis for TCRE is a compensation between the diminishing sensitivity of radiative forcing369

to CO2 at higher atmospheric concentration and the diminishing ability of the ocean to take up heat370

and carbon at higher cumulative emissions (Intergovernmental Panel on Climate Change, 2021). We371

follow the framework laid out in Damon Matthews et al. (2021) to use a TCRE that accounts for non-372

CO2 forcing via the parameter fnc > 0 which increases the average value and variance of the TCRE.373

We write our “e↵ective” TCRE – the TCRE including non-CO2 forcing factors – as374

�eff :=
�

1� fnc
. (3.1)

The mean value of �, fnc, and �eff and their uncertainties are provided in Online Appendix F, Table 4.375

Using this approach, we are able to reproduce central estimates of warming levels this century reported376

by WGI in AR6 for each SSP reasonably well, see Online Appendix F, Table 5. Therefore in our377

12The analogous figure to Figure 4 for the “no free lunches” MACC is provided in Online Appendix E. We also
performed a second recalibration that sets the costs of the the < $0 mitigation options to infinity, coined the “infinite
cost” calibration. The figure associated with this calibration is also in Online Appendix E. We do not show the results of
CAP6 with this calibration as the final costs of abatement are lower than in the “no free lunches” case, but higher than
the ‘main specification.’ Hence, the results will simply be an interpolation between the main specification and the “no
free lunches” results.
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calculations of temperature, we use378

T 0(t) = �eff (t). (3.2)

The TCRE approach has a number of advantages: (i) it captures short- and long-term uncertainty in379

climate warming, (ii) it is relatively simple and transparent, and (iii) emulates state-of-the-art climate380

models well (Allen et al., 2009; Dvorak et al., 2022).13 Moreover, the TCRE framework has been used381

in a number of other climate-economic models (e.g., Dietz and Venmans, 2019; Campiglio et al., 2022).382

4 Model calibration383

4.1 Featured runs384

To calibrate CAP6, we use discount rates in line with recommendations from the US government.385

Previous analyses use a discount rate of 3% (Committee on Assessing Approaches to Updating the386

Social Cost of Carbon et al., 2017), but recent studies use 2% in light of recent economic trends (such387

as falling interest rates) and expert elicitation (Council of Economic Advisors, 2017; Drupp et al., 2018).388

Indeed, New York State adopted a 2% discount rate in their social cost of carbon calculations (New389

York State Energy Research and Development Authority and Resources for the Future, 2020). We390

calibrate our featured runs using 1.5%, 2% and 2.5% discount rates to be consistent with the recent391

report issued by the EPA (National Center for Energy Economics, 2022) and use the term structures392

from Bauer and Rudebusch (2020). We also show results using a 3% discount rate for consistency with393

prior US government estimates (Committee on Assessing Approaches to Updating the Social Cost of394

Carbon et al., 2017).14 See Online Appendix G, Table 6 for specifics. We assume g = 1.5% for all395

runs. For each discount rate, we assume that  = 10, in line with trends observed in the U.S. financial396

market (Schroyen and Aarbu, 2017). For our emissions baseline, we choose SSP2–4.5, as it aligns with397

recent projections of emissions used by the US EPA (Rennert et al., 2022). Lastly, we assume a modest398

exogenous technological growth rate of 1.5% and no endogenous technological growth, owing to an399

inability to reliability calibrate the endogenous technological growth rate parameter '1. The choice of400

no endogenous technological growth makes our technological growth assumptions conservative, given401

the known link between agent investment in mitigation and rates of growth in clean sectors (Acemoglu402

et al., 2012).15403

4.2 Ensemble runs404

While risk associated with temperature rise and damage function uncertainty are holistically evaluated405

in a given run of CAP6, other sources of uncertainty exist and are excluded, such as uncertainty in406

13Dvorak et al. (2022) showed that the TCRE adequately emulates the response of the more comprehensive FaIR
model (Smith et al., 2018), itself a combination of carbon cycle models (Joos et al., 2013) and physical response mod-
els (Geo↵roy et al., 2013b,a). The TCRE can deviate from more sophisticated models slightly depending on the forcing
scenario (Intergovernmental Panel on Climate Change, 2021), but the di↵erences are minor and are therefore ignored in
this study.

14We do not here take a stand on which discount rate is correct, but do consider the 2% rate as our benchmark, as it
is the central rate used by the EPA.

15We demonstrate how including endogenous technological growth influences model output in Online Appendix K.
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Figure 5: CAP6 output for four discount rates in our main specification.

the rate of technological growth, or which exogenous emissions baseline or discount rate is assumed.407

Each of these represent a source of epistemic uncertainty in the climate-economic system; indeed, not408

knowing how much CO2 will be emitted over the next century, for example, strongly influences the409

range of possible climate realizations, and thus, climate-related risk (Hawkins and Sutton, 2009; Lehner410

et al., 2020). To probe the impact of assumptions associated with each of these parameters on model411

output, we carry out a Monte Carlo analysis. We sample discount rates between the range of 1.5%412

and 4.25%; we chose the lower bound based on the lower bound considered by the EPA and the upper413

bound is the preferred rate used in DICE–2016R (Nordhaus, 2017). The value of agent RA has been414

measured to as high as 15 in wealthy countries and as low as 3 in some European nations (Schroyen and415

Aarbu, 2017), which defines our range. We choose the modest ranges of 0%–3% for both the exogenous416

and endogenous rate of technological growth. Note that we use our ‘main specification’ MACC for the417

ensemble run analysis. See Online Appendix G, Table 7 for our numerical values.418

5 Results419

5.1 Main specification420

We show the featured model runs of CAP6 in Figure 5. We find that the 2% discount rate policy421

implies a high cost of carbon and stringent abatement policies, see panels 5A–B. The cost of carbon422

declines over time; this, however, should not be confused with reduced abatement action over time.423

Rather, the declining dynamics of carbon prices can be entirely attributed to the improved ability to424

abate CO2 emissions owing to technological improvements (see Eqn. (2.12)). This set of mitigation425

actions leads emissions peaking in 2070, with CO2 concentrations stabilizing before starting to decrease426

by mid-century. The expected global temperature change resulting from this emissions policy is less427
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than 1.5 �C by 2100 (⇠ 1.47 �C) and less than 2 �C in 2200 (⇠ 1.6 �C).428

Decreasing the discount rate to 1.5% leads to complete and immediate cessation of emissions (see429

panel 5B), thus maximizing costs and decreasing 2100 (2200, resp.) warming by 0.2 �C (0.3 �C, resp.)430

in comparison to the 2% run. Larger discount rates relax the stringent abatement policies seen in431

the 2% and 1.5% discount rate cases. This results in lower costs and less mitigation action, and432

consequentially, larger warming and damages. We find that both the 2.5% and 3% discount rates433

warm beyond the warming target of 1.5 �C by 2100 established in the Paris Agreement. Moreover,434

the 3% discount rate policy exceeds 2 �C warming by 2100, and the 2.5% discount rate policy barely435

holds temperatures below 2 �C by 2100 (⇠ 1.96 �C by 2100). In the case of the 2.5% and 3% discount436

rates, CO2 concentrations rise before falling as emissions cease.16 The 2.5% (3%, resp.) discount rate437

individual also tends to lose ⇠1% (⇠1.4%, resp.) more GDP in 2100 and ⇠1.3% (⇠2%, resp.) more438

in 2200 than in the 2% discount rate case, showing the expensive consequences of delayed action in439

combating climate change.440

The intuition behind our declining carbon prices can be found in our structural representation of441

risk. In the early periods of the model, the social planner faces the risk of catastrophic long-term442

damages if they choose not to abate any CO2 emissions (⇠50% GDP or higher, if the worst-case443

climate sensitivity and damage function concurrently materialize); this causes the social planner to444

mitigate aggressively early on to e↵ectively rule out such catastrophic futures from ever materializing.445

Technological progress then brings down abatement costs over time (especially if learning-by-doing446

e↵ects are considered, see Online Appendix K), and drives down the carbon price over time. These447

two factors combine to cause carbon prices to start high and decline over time.448

From this analysis, we find that modeling the cost of climate risk with CAP6 supports stringent449

mitigation action. We find that the carbon price and corresponding mitigation policy associated with450

the 2% discount rate saves at least $22 trillion 2020 USD globally in 2100 (assuming global GDP grows451

annually by 4%) in comparison to the higher discount rate policies. In addition, employing policies452

with discount rates considered by the EPA result in an expected warming level in line with the targets453

set forth in the Paris agreement (United Nations Framework Convention on Climate Change, 2015),454

providing the targets with explicit economic support. When faced with potentially severe damages, the455

representative agent makes a clear choice: they sacrifice consumption today to abate CO2 emissions,456

consistent with our understanding of how risk influences climate mitigation policy.457

5.2 Alternative calibration: “no free lunches”458

We recalculate our featured runs using the “no free lunches” MACC and show the results in Figure 6.459

The “no free lunches” cost curve leads to an increase in the optimal price of carbon; the 2020 CO2 price460

increases by 20% in the 2% discount rate case. However, the “no free lunches” MACC significantly461

influences the e�cacy of the optimal price in abating CO2 emissions. For example, the 2% discount462

rate policy now abates only 70% of emissions (as opposed to ⇠ 85% in the main specification). This463

emissions pathway reaches ⇠ 1.7 �C of warming by 2100 and ⇠ 1.9 �C warming by 2200, notably464

16We use the carbon cycle model of Joos et al. (2013) to compute carbon concentrations for our optimal mitigation
pathways, see Online Appendix F.
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Figure 6: CAP6 output for four discount rates using the “no free lunches” cost curve calibration.

maintaining less than 2 �C warming. This shows that even if the cost of abatement is considerably465

higher than the IPCC foretells, keeping total warming below 2 �C is still optimal within CAP6 when466

a 2% discount rate is used.467

Running CAP6 with the “no free lunches” calibration and a 2.5% or 3% discount rates show468

similar results as the 2% rate, with higher optimal prices, more near-term warming, and higher CO2469

concentrations. In this case, however, we find that using a 2.5% or 3% discount rate exceeds 2 �C470

warming in 2100, thus exceeding the upper bound of targeted warming in the Paris agreement. This471

shows that if abatement turns out to be more costly than we expect, using a higher discount rate in472

climate policy makes the world’s ability of achieving the warming targets in the Paris agreement far473

more tenuous.474

The only exception to the pattern above – the “no free lunches” MACC leading to less abatement475

and more warming – is the 1.5% discount rate policy, which still abates nearly 100% of emissions in the476

near term. This can be explained by this agent having both a low discount rate and low risk tolerance,477

and therefore sacrifices considerable consumption to minimize both experienced and potential future478

damages owing to climate change.479

5.3 Ensemble model analysis480

We probe the influence of uncertainty in exogenous model parameters on CO2 price paths, temperature481

change, CO2 concentrations, and economic damages incurred in our ensemble runs, shown in Figure 7.482

We find that CO2 price paths decline over time, regardless of socio-economic specification, owing to483

agent risk response and technological progress. The level of CO2 price varies between baselines because484

the MACC is baseline dependent (see Eqn. (2.12)); for the same fraction of emissions abated, agents485

pay di↵erent prices depending on the baseline. Finally, cost variance is highly stratified across baselines,486
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Figure 7: Cost (top row, panels A–E), temperature (second from top, panels G–K), CO2 concen-
trations (third from top, panels M–Q), and economic damages (bottom row, panels S–W) from our
ensemble model runs. Dark (light, resp.) shaded region represents the 36th–64th (1st–99th, resp.) per-
centile range, solid lines represent the median time series. In the final column (panels F, L, R, and X)
we plot the standard deviation of each parameter distribution in time.
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see panel 7F.487

Central estimates of temperature, CO2 concentrations, and economic damages,17 however, do not488

see significant di↵erences in central estimates across baselines as was observed in CO2 prices. This489

owes to suggested policy in CAP6 being consistent across baselines; the only di↵erence is the price of490

implementing said policy. Hence, the impact variables are relatively insensitive to baseline choice. This491

is a notable result, as it implies CAP6 finds an optimal outcome across emissions baselines for a given492

calibration. The variance in each impact variable however, displayed in panels 7L,R,X, is sensitive to the493

choice in baseline, with high (low, resp.) emissions scenarios having the highest (lowest, resp.) amount494

of variance. This can be explained by considering the consequences of inaction (i.e., high discount rate495

policies). In a high emissions scenario such as SSP5–8.5, inaction leads to more emissions, and thus496

higher impacts than in a low emissions scenario such as SSP2–4.5. Hence, the variance in each impact497

variable are all higher for high emissions scenarios than in low emissions scenarios.498

5.3.1 Variance decomposition of ensemble results499

The significant stratification of uncertainty in our output variables shown in Figure 7 motivates further500

study; is it high discount rates that control prices, for example, or rates of technological change? To501

this end, we perform a regression analysis of CO2 price and the impact variables studied above at every502

point in time against parameter values, and plot the fraction of total r2 attributable to each parameter503

in Figure 8 (see Online Appendix I for details and supporting figures).504

For prices, we find that the discount rate (i.e., EIS and PRTP) dominate uncertainty in the near term505

(i.e., prior to 2100). This owes to these parameters dictating individual attitudes towards time-related506

risk and discounting. In early periods of the model, climate damages are highly uncertain. Therefore,507

any abatement action that is taken is with the intent to rule out the most catastrophic outcomes and508

secure future welfare; the extent to which individuals respond to this threat of catastrophe is governed509

by the discount rate, thus determining the level of early mitigation action and driving costs. On longer510

timescales (past 2100), climate damages have been more distinctly realized, and the number of possible511

futures have narrowed. Individuals must come to grips with their damaged future, and generally begin512

investing more stringently in emissions abatement. This comes at a cost, a cost that is determined513

by how much cheaper abatement technologies have become in the time it took to reach this decision.514

In particular, high prices in late periods are almost entirely attributable to low rates of technological515

change across SSPs.516

For the impact variables, however, a di↵erent story emerges: the influence of the discount rate is517

pronounced for much longer than in the case of CO2 prices. This owes to inactivity early on leading to518

long-term consequences in the form of climate-economic impacts that cannot simply be fixed by more519

spending on abatement.18 Indeed, while technological change can certainly halt any further increase in520

global mean surface temperature, for example, it cannot undo past malfeasance.19 Hence, the discount521

17We refer to this set of variables as “impact variables” for the remainder of this discussion.
18This conclusion relies on a high cost of net-negative emissions; if a breakthrough in direct air capture (DAC) technolo-

gies occurs, then we would expect the variance explained in impact variables owing to technological growth to be higher,
as net-negative emissions would enable long-run temperatures, CO2 concentrations, and economic losses to be changed,
perhaps significantly so, depending on how expensive DAC turns out to be.

19An important qualification to this conclusion is that we do not consider solar geoengineering, which could lead to
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Figure 8: Fraction of total variance (calculated as total r2) attributable to each model parameter
for carbon prices (top row, panels A–E), temperature (second row, panels F–J), CO2 concentrations
(third row, panels K–O), and economic damages (bottom row, panels P–T). Each column represents a
di↵erent SSP.

Note: Cost variance (top row) begins in 2020 whereas temperature, CO2 concentrations, and economic damages

(bottom three rows) begin in 2030, as the model is initialized with the same climate conditions and no damages

incurred, leading to zero variance in 2020 for the latter three variables.
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rate has a much more pronounced influence on far-distant temperature rise, atmospheric CO2 levels,522

and economic damages than in the case of CO2 prices.523

Interestingly, Figure 8 shows that the influence of RA (i.e., the value of  ) is suppressed for CAP6524

output uncertainty20 relative to other model inputs. We postulate that this owes to the risk aversion525

captured by  (i.e., the Epstein-Weil-Zin sense of risk aversion across states of nature) is relatively less526

important to risk across states of time. Given the large residence time of CO2 in the atmosphere, it527

stands to reason that the impact of risk aversion with respect to time would dwarf the impact of risk528

aversion across states of nature. Indeed, the results of Figure 8 provide resounding support for this529

theory: risk aversion across states of time (captured by EIS) drowns out the influence of risk across530

states of nature (as captured by RA).531

6 Conclusion532

Over a decade ago, Lord Nicholas Stern wrote that “Presenting the [climate] problem as risk-management533

is likely to point strongly towards a policy for a rapid transition to a low-carbon economy” (Stern,534

2013).21 Our framework takes this view seriously, and, in the final analysis, shows the wisdom in535

Stern’s words. By treating CO2 as a risky asset and calculating the optimal CO2 price and associated536

abatement policy using U.S. EPA-consistent discount rates, we find that optimal policy limits warming537

below 2 �C in 2100 for each discount rate we considered. Practically speaking, this corresponds to538

cutting > 70% of CO2 emissions in relatively short order; a “rapid transition to a low-carbon econ-539

omy” indeed. Our results flip the conventional view of climate policy on its head; rather than abating540

progressively more CO2 emissions as time goes on (and damages are felt more acutely), our model541

suggests stringent early abatement as a ‘hedge’ against potentially severe damages associated with542

climate change.543

Evidently our framework for computing optimal climate policies is idealized, and in practice, a544

number of additional considerations are necessary for formulating robust climate policy. For example,545

we compute a globally “optimal carbon tax” as a proxy for the overall strength of climate policy, not546

as an actual policy guide.22 Prospects for such a common global carbon tax are bleak, to put it mildly.547

Therefore, useful extensions of this work would analyze the transition risk towards zero emissions548

policies, i.e., by considering asset stranding and adjustment costs (Campiglio et al., 2022), the potential549

for a ‘run on fossil fuels’ induced by an expected transition away from fossil fuel use (Barnett, 2023),550

or considering the distributional e↵ects of heterogeneous climate policy mixes in di↵erent nations (as551

explored in Clausing and Wolfram, 2023). More work in this direction could prove both scientifically552

and economically insightful as well as immediately applicable in a wide variety of policy settings.553

increased spending influencing temperature, CO2 concentration, and economic damages levels in both the short- and
long-term.

20This is not to say that RA has no impact on price levels, as increasing (decreasing, resp.) RA does slightly raise
(lower, resp.) near term prices, see Online Appendix J.

21Others, like Nordhaus (2007), criticized Stern at the time, while Weitzman (2007) argued that Stern was “right for
the wrong reasons”, reasons subsequently developed in Weitzman (2009, 2012).

22Another limitation is that we compute the optimal carbon tax with a single exogenous discount rate. In reality, the
discount rate will respond to the level of risk (Lucas, 1976) and is uncertain on long time horizons (Weitzman, 1998).
Allowing for a dynamic discount rate in our framework is a potentially fruitful avenue of future work.
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A Brief literature review1

There are three primary ways that risk and uncertainty are incorporated into climate-economic inte-2

grated assessment models. The first such approach is to augment DICE with stochastic components3

and reframe the model into a dynamic stochastic optimal control problem. This approach has yielded4

a number of fruitful insights (see, e.g., Lemoine and Traeger (2016a,b)). For example, the seminal work5

of Cai and Lontzek (2019) show that the possibility of hitting a climate tipping point substantially in-6

creases the SCC, and thus the stringency of optimal mitigation policy, using a continuous-time version7

of DICE with many stochastic components.8

Another approach is to formulate climate policy from the perspective of dynamic stochastic general9

equilibrium (DSGE) models. This approach was pioneered by Golosov et al. (2014), who derive a10

simple expression for the marginal externality damage from carbon emissions (analogously, the optimal11

carbon price or SCC). This expression shows that the optimal carbon price can be – in a stylized12

setting – decomposed into three contributing factors: (i) the discount rate, (ii) the elasticity of damage13

associated with a marginal ton of emissions, and (iii) the rate of depreciation of carbon stocks in the14

atmosphere. However, this study does not include temperature uncertainty, and utilizes a logarithmic15

utility, which causes the role of uncertainty to be substantially suppressed. Van Den Bremer and16

Van Der Ploeg (2021) extend the DGSE framework to include recursive preferences, finding that the17

influence of temperature and climate damage uncertainty increase the SCC. Similar conclusions were18

drawn by Hambel et al. (2021), whose formulation allows for multiple, additive climate shocks, as well19

as for considering the influence of climate change on both GDP levels and growth rates.20

A third approach is to employ methods from financial economics to explore the influence of uncertainty21

on carbon prices. Dietz et al. (2018) utilize a simple analytic model derive the consumption-based capital22

asset pricing model “beta” (Lucas, 1978) for climate mitigation projects. They find that the sign of23

the “climate beta” is positive, and that the discounted expected net benefits of carbon emissions24

abatement are increasing in the “climate beta”. However, they do not utilize recursive preferences25

in their approach. Lemoine (2021) formulates a simple analytic expression that highlights the various26

channels of uncertainty associated with the SCC and signs each; the collective e↵ect is positive. Barnett27

et al. (2020) build a dynamic structural model which includes decision making under uncertainty,28

nonlinear impulse response functions, and dynamic valuation, and find that the influence of uncertainty29

is multiplicative across economic and climate channels. Each of these contributions provide relatively30

simple – yet powerful – explanations, in financial economic terms, of how uncertainty influences optimal31

carbon pricing.32
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B Statement of optimization problem33

Put together, solving CAP6 is equivalent to solving the following optimization problem:

max
{xt}t2{0,1,...,T�1}

U0(xt), (B.1)

Such that : xt 2 R+, (B.2)

Ut =
h
(1� �)c⇢t + �

⇣
Et
⇥
U↵
t+1

⇤⇢/↵⌘i1/⇢
(B.3)

UT =

✓
1� �

1� �(1 + g)⇢

◆1/⇢

cT , (B.4)

ct = c̄t(1� t(xt))(1�Dt( t, ✓t)), 8t 2 {0, 1, ..., T � 1} (B.5)

cT = c̄T (1�Dt( T , ✓T )), (B.6)

c̄t = c̄0(1 + g)t, (B.7)

 t =

Z t

0
E⇣d⇣, (B.8)

Dt( t, ✓t) =
X

✓t2⇥t

P (✓T |✓t)Dtot( t, ✓t) (B.9)

t(xt) = MACC(xt)(1� '0 � '1Xt)
t�10, (B.10)

Xt =

R t
0 x⇣E⇣d⇣

 t
, (B.11)

� =
1

1 + �
(B.12)

0  P (✓T |✓t)  1, (B.13)

�, ⇢,↵, g,'0,'1, ⌧DAC , Et given and positive, (B.14)

D0( t, ✓t) = 0. (B.15)

See the main text for details regarding functional forms, calibrations, and results after numerically34

solving the model.35

C Prototypical model run36

Given that our climate-economy model is unlike most other such models in the literature, an example37

of how each of the components laid out above interact in one model “run” is warranted. First, let us38

establish some important concepts and recurring values that will be essential for our understanding.39

We have chosen T = 6 decision periods. This implies that we have a total of n := 2T � 1 = 63 decision40

nodes in the tree. Decisions are made at times t such that t 2 {2020, 2030, 2060, 2100, 2150, 2200}, and41

an additional period (with no decisions being made) occurs at t = 2250 to establish the terminal period42

conditions. As the binomial tree is path dependent, it immediately follows that the number of unique43

paths through the tree is equal to the number of nodes in the final period, given by nf := 2T�1 = 32.44

Any vector of length n (which represents the value of a given variable, say mitigation, at each node in45

the tree) can be readily translated into a set of paths of shape nf⇥T through the tree (which represents46

the values of a given variable at the nodes in each path through the tree). Note that Figure 1 in the47

main text is a helpful visual guide for our entire discussion.48
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Step 1: Simulate climate damages49

The first step is to simulate potential climate damages. This comes before agent utility is optimized,50

as decisions about utility are made within the context of the landscape of potential damages. Once the51

landscape of damages are calculated (and we will be more precise about what is meant by “landscape”52

in our discussion below), then damages are interpolated in our utility calculations. Note that in the53

following discussion NMC = 3 ⇥ 106 refers to the number of draws taken in our Monte Carlo samples54

of TCRE and damage function parametric uncertainty.55

Climate damages are simulated using the following prescription. First, we specify an emissions baseline56

by choosing an SSP. Once specified, there is a range of possible cumulatively emitted CO2 at each point57

in time, depending on hypothetical agent mitigation policy. Let the maximum cumulative emissions58

(associated with no mitigation) at a time t be represented by  ⇤
t . Cumulative emissions  t therefore59

always lie in the range 0   t   ⇤
t . We discretize the range of potential cumulative emissions at each60

point in time by applying a constant scaling 0  m  1 to the SSP and computing damages for each61

value of m. In our runs, we choose M = 101 values of m. To recapitulate: we choose a value of m such62

that 0  m  1, resulting in a time series of cumulative emissions  t = m ⇤
t that is manifestly less63

than or equal to the maximum permissible amount  ⇤
t for all t.64

For a given time series of cumulative emissions, the corresponding temperature change is uncertain65

owing to the uncertainty in the TCRE. We draw NMC samples of the TCRE from a rectified normal66

distribution with best estimate and variance taken from Table 4 and evaluate (3.2), which results in67

NMC time series of global temperature change. For each temperature time series, we at random choose68

a damage function (statistical, structural, or meta-analytic) and evaluate (2.6) for the chosen damage69

function and the additional tipping points piece. The total damage is given by (2.7). This procedure70

results in NMC time series of climate damages. The climate damage time series are then ordered by71

severity of the final period damages (thus establishing an orientation of the “fragility” dimension),72

and grouped in NMC/nf sized bundles. An average is then taken over each bundle, resulting in nf73

time series of climate damages. The averaging procedure is necessary to make the simulated climate74

damages congruent with the dimensionality of the binomial tree.75

The procedure described above has resulted in a nf ⇥T matrix of climate damages, ordered from high76

to low. Continuing for every value of m results in a M ⇥nf ⇥ T landscape of climate damages. This is77

coined as a landscape owing to its encapsulation of the potential extent of climate damages. The M -78

dimension contains information about the extent of emissions; the T -dimension contains information79

about the timing of damages; and the nf -dimension contains the extent of climate damages based on80

the uncertainty in TCRE and the damage function. With this landscape now calculated, we can turn81

our attention to how the economic utility is maximized within it.82

Step 2: Utility maximization83

We optimize the economic utility given by (2.1) using a genetic algorithm (Goldberg, 1989). The genetic84

algorithm is a stochastic optimization routine, where a set of random solution vectors are generated85

and their “fitness” is determined. The vectors with high fitness are stored for the next round (they86

“survive”), and vectors with low fitness are discarded (they “die”). The low fitness vectors are replaced87

with another set of random vectors (the “o↵spring” of the more fit vectors) whose fitness is compared to88

the incumbents’. This process continues until minimal changes in the highest fitness value are recorded89

for a number of rounds; the vector corresponding to the highest fitness is then said to be the “optimal”90

solution vector. The genetic algorithm is best suited for objective functions with unknown or di�cult91

to evaluate gradients, making it ideal for CAP6. In our use case, the randomly selected solution vectors92

are mitigation vectors, and a given vector’s fitness is its 2020 economic utility. In what follows, allow93

~x be a vector of mitigation values with length n.94
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EZ utility captures future risk by allowing the utility at time t be dependent on the utility at time t+195

(see Eqn. (2.1)). Evaluating the utility must therefore begin at the final period, and is then evaluated96

backwards to t = 2020. Thus, the first step is to evaluate the final period utility (2.2) where the final97

period consumption is given by (2.5) for each final state node. (Recall there are nf = 32 nodes in98

the final period.) The assumed SSP and the mitigation vector ~x are used to calculate the emissions99

time series for every path through the tree, and thus the cumulative emissions at each end node. The100

cumulative emissions are used in (2.8) to calculate the damages at each node.101

For each node before the final period, the mitigation action up to but not including a given node is102

used to calculate the cumulative emissions at that node. The cost of mitigation is found using (2.12),103

and the damages are found using (2.8). These in tandem determine the consumption by (2.4). The104

consumption and the following period utility are used in (2.1) to determine the utility. This continues105

for each node, and each randomly generated vector, until the genetic algorithm finds the mitigation106

vector with the highest utility.107

Step 3: Visualize model output108

The most fit mitigation vector ~x⇤ translates into the output shown in Figures 5, 3, 6, 9, and 7 in the109

following way. To calculate the cost, we apply (2.9) at each node, including the technological growth110

prefactor found in (2.12). We calculate the expected mitigation using (2.13). We use ~x⇤ to calculate the111

emissions at each node, which readily translates into the concentrations at each node using (F.4) and112

the expected warming at each node using (3.2) assuming the mean value of TCRE. Economic damages113

for each node are calculated using ~x⇤ in (2.8). Averaging over the cost, expected mitigation, emissions,114

temperature, CO2 concentrations, and damage amount in each period gives the time series shown in115

Figures in the main text and the Online Appendix.116

D Supplementary discussion: damage functions117

In Table 1 we show the calibrated values and uncertainties for the free parameters in (2.6). Below, we118

provide a technical description of how the values in Table 1 are computed.119

D.1 Discussion of IPCC aggregate damage functions120

D.1.1 Statistically estimated damage function121

The statistically estimated damage function (Burke et al., 2018) builds on previous work involving the122

nonlinear response of economic productivity to temperature (Burke et al., 2015), following method-123

ologies laid out more generally in Carleton and Hsiang (2016). This damage function relies on the124

specification of a certain horizon where damages set in, and choose the natural markers of 2049 and125

2099 (mid-century and end of century, respectively). The mid-century and end of century estimates126

are starkly di↵erent, as in this framework climate change slows economic growth, therefore requiring127

su�cient time for damages to compound. Damages are also di↵erent depending on which SSP one128

chooses; this owes to the fact that each SSP contains di↵erent assumptions around adaptation, techno-129

logical growth, and so on. Finally, the warming levels represented in Burke et al. (2018) are relative to130

a 1986–2005 baseline, not relative preindustrial temperature levels. The IPCC’s representation of this131

damage function di↵ers from the original publication in three ways: they only report end-of-century132

estimates; they aggregate damage estimates across SSPs without indicating the di↵erences between133

each; and they report the temperature change as relative to preindustrial rather than to a 1986–2005134

baseline.135
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Table 1: Fitted parameters for the damage function (2.6) based on Burke et al. (2018), Dietz et al.
(2021) and Intergovernmental Panel on Climate Change (2022).

Damage function $̄2 [K�2] �$2 [K�2] $̄1 [K�1] �$1 [K�1]

Statistically estimated

SSP1, mid-century 5.36⇥ 10�3 7.13⇥ 10�4 8.93⇥ 10�3 1.12⇥ 10�3

SSP2, mid-century 3.09⇥ 10�3 4.76⇥ 10�4 1.24⇥ 10�2 1.90⇥ 10�3

SSP3, mid-century 2.95⇥ 10�3 4.74⇥ 10�4 1.18⇥ 10�2 1.89⇥ 10�3

SSP4, mid-century 3.50⇥ 10�3 7.14⇥ 10�4 5.83⇥ 10�3 1.19⇥ 10�3

SSP5, mid-century 3.40⇥ 10�3 5.20⇥ 10�4 1.14⇥ 10�2 1.75⇥ 10�3

SSP1, end-of-century �1.24⇥ 10�3 2.49⇥ 10�4 7.07⇥ 10�2 1.42⇥ 10�2

SSP2, end-of-century �2.33⇥ 10�3 4.75⇥ 10�4 7.21⇥ 10�2 1.47⇥ 10�2

SSP3, end-of-century �2.81⇥ 10�3 5.93⇥ 10�4 7.20⇥ 10�2 1.52⇥ 10�2

SSP4, end-of-century �1.11⇥ 10�3 3.42⇥ 10�4 4.67⇥ 10�2 1.43⇥ 10�2

SSP5, end-of-century �1.33⇥ 10�3 3.45⇥ 10�4 5.56⇥ 10�2 1.45⇥ 10�2

Structurally estimated 2.30⇥ 10�3 8.53⇥ 10�4 2.05⇥ 10�3 7.59⇥ 10�4

Meta analysis 6.85⇥ 10�3 2.43⇥ 10�3 2.98⇥ 10�4 1.06⇥ 10�4

Climate tipping points 4.8⇥ 10�1 4⇥ 10�2 �4⇥ 10�2 1⇥ 10�2
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We correct these inconsistencies in our formulation to be consistent with the original publication. We136

include explicitly the time dependence of this damage function in our simulated climate damages,137

allowing for the decision periods of 2030 and 2060 to use the mid-century estimates and each decision138

period from 2100 onward to use end of century estimates. This of course is not perfect, as damages139

are expected to continue growing past 2100 in their framework, but we lack projection data to extend140

their framework to longer time horizons. Therefore, our estimates of climate damages in the long run141

are to be considered as conservative. We also change the fit to damage function data based on which142

SSP we consider. Finally, we correct the temperature baseline by shifting the abscissa by ⇠ 0.8 �C to143

correctly represent temperature anomalies relative to preindustrial levels.144

A final qualifier to our use of this damage function is our parameterization of uncertainty. The un-145

certainty range for these estimates is large, and net-benefits of climate change are not ruled out even146

in the long term (though they are exceptionally rare). The extent of this uncertainty is largely driven147

by the assumed economic response to climate change and the discount rate chosen in their model, and148

no range is given for the estimates of economic damages for a given climate model’s projection; only149

the median estimate is reported for each climate model. We also suppress climate model uncertainty150

in their presented results so as to not double count climate uncertainty, resulting in a more narrow151

uncertainty envelope for damages estimates. We present our formulation in Figure 3A, taking care to152

allow uncertainty to broaden between 2049 and 2099, consistent with the original publication.153

D.1.2 Structurally estimated damage function154

In the case of the structurally estimated damage function (Rose et al., 2017), three IAMs’ (DICE (Nord-155

haus, 1992), PAGE (Hope et al., 1993), and FUND (Tol, 1999)) output are aggregated to form a range156

of climate damages estimates as a function of temperature. The central value of climate damages is157

close to that of DICE–2023 (Barrage and Nordhaus, 2023). The uncertainty associated with this dam-158

age function results from sampling the input parameter distribution of each IAM (Rose et al., 2017).159

We present our formulation of this damage function based on IPCC data in Figure 3B.160

D.1.3 Meta-analytic damage function161

The meta-analytic damage function (Howard and Sterner, 2017) is derived from a synthesis of studies162

found in the literature, where care was taken to account for duplicates of studies and methodology.163

We use the preferred damage function from Howard and Sterner (2017), and assign an uncertainty164

envelope which encompasss much of the spread in the data reported by the IPCC, see Figure 3C. One165

limitation of this approach is that it is unclear if a set of damage estimates using di↵erent models and166

estimation types can be joined together in this way to form one unified “damage function”; moreover,167

it is also unclear if the uncertainty found in the data can truly be labeled as “parametric” or simply a168

by-product of disagreements in the literature.169

D.1.4 Synthesis170

The inability to properly compare damage estimates across studies and methodologies led WGII to171

conclude that a reliable range of damage estimates could not be determined; there is no single ‘correct’172

damage function that we can specify in this work (Intergovernmental Panel on Climate Change, 2022).173

We resolve this issue by taking a conservative approach and sampling all of the damage functions174

mentioned above with equal probabilities; in this way, we remain agnostic about which damage function175

is the ‘correct’ one, and sample the space of possible damage functions in addition to uncertainty176

inherent to a specific climate damage estimation methodology.177
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Despite the issues with individual damage functions described above, our approach to sampling all178

available damage functions has the benefit that, at minimum, we sample a variety of damage function179

shapes and scales. The statistically estimated damage function has a concave shape at end-of-century.180

Furthermore, this damage function is time dependent, capturing the impact of climate change impacting181

economic growth; this has been shown to be an important factor in climate policy (Moore and Diaz,182

2015). The structurally estimated damage function, in contrast, is convex, with low damages in the183

short run which slowly rise in temperature. Finally, the meta-analytic damage function is also convex,184

but rises much faster than the structurally estimated damage function.185

D.2 Damage function calibration186

We fit the damage function data in the following way. For each damage function, we require that the
concavity of the damage function is preserved, i.e., @2D/@T 02 ? 0, depending on the damage function
being considered. To solve for the damage function coe�cients as presented in (2.6), we require knowing
the damages for two data points, generically labeled as (T1,D1) and (T2,D2). Then we can write

D1 = T1($2T1 +$1), (D.1)

D2 = T2($2T2 +$1), (D.2)

and, solving the above for $1 and $2, results in

$1 =
D1T 2

2 �D2T 2
1

T2T1(T2 � T1)
, (D.3)

$2 =
D2T1 �D1T2

T2T1(T2 � T1)
. (D.4)

Having established the mean state, we can now introduce uncertainty into (D.3) and (D.4). We do so187

by allowing D1 to be uncertain, assigning it a Gaussian distribution D̃1 with mean D̄1 and standard188

deviation �D1 . We link this to a distribution ofD2 by invoking the condition @2D/@T 02 ? 0, immediately189

resulting in the condition $2 ? 0. Using (D.4), we arrive at190

D̃2 ? D̃1

✓
T2

T1

◆
. (D.5)

Eqn. (D.5) is generic for any damage function, but our model, we want either a concave up or concave191

down damage function. To accomplish this, we include an additional factor ⇤ > 0 to (D.5) such that192

the inequality is ensured, i.e.,193

D̃2 = ⇤D̃1

✓
T2

T1

◆
, such that ⇤ ? 1. (D.6)

Therefore, if ⇤ > 1, we have a concave up damage function, and if ⇤ < 1, we have a concave down194

damage function. Setting T1 = 3 �C and T2 = 10 �C, we fit values for D̄1, �D1 , and ⇤ to each set of195

damage function data resulting in the values presented in Table 1. See Table 2 for the values of our196

calibration coe�cients.197

E Supplementary discussion: cost of of mitigation198

E.1 Marginal abatement cost curve alternative calibrations199

As a sensitivity test of our marginal abatement cost curve (MACC), we increased the cost of each200

mitigation option by one cost bracket, eliminating the zero-cost mitigation options (i.e., “free lunch”201

options) that the IPCC reports in their WGIII report. The resulting cost figure is in Figure 1.202
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Table 2: Fitted parameters for the damage function calibration equation (D.6) based on Burke et al.
(2018), Dietz et al. (2021) and Intergovernmental Panel on Climate Change (2022).

Damage function D̄1 [–] �D1 [–] ⇤

Statistically estimated

SSP1, mid-century 0.075 0.01 2.5

SSP2, mid-century 0.065 0.01 2.0

SSP3, mid-century 0.062 0.01 2.0

SSP4, mid-century 0.049 0.01 2.5

SSP5, mid-century 0.065 0.01 2.1

SSP1, end-of-century 0.2 0.04 0.87

SSP2, end-of-century 0.195 0.04 0.75

SSP3, end-of-century 0.19 0.04 0.69

SSP4, end-of-century 0.13 0.04 0.82

SSP5, end-of-century 0.155 0.04 0.82

Structurally estimated 0.027 0.01 2.8

Meta analysis of climate damages 0.063 0.022 3.3

Table 3: Fitted coe�cients for (2.9), the cost of abating all emissions, ⌧a := ⌧(x = 1), and the percent
of consumption required to abate all emissions, a := MACC(x = 1), based on AR6 WGIII data for
each SSP in our ‘main specification’ and our “no free lunches” alternative calibration. All dollar values
are in 2020 $USD.

SSP ⇠ ⌧0 [$ tCO2-eq
�1] ⌧a [$ tCO2-eq

�1] a [%]

Main specification

1 1.9 27.5 153.88 3.0

2 2.4 27.5 264.09 5.9

3 2.9 27.5 457.57 11.3

4 2.5 27.5 292.15 6.69

5 3.0 27.5 526.58 13.2

“No free lunches”

1 1.8 58.9 297.42 6.1

2 2.3 58.9 528.58 11.9

3 2.8 58.9 909.69 22.5

4 2.3 58.9 528.58 13.4

5 2.9 58.9 1011.56 26.3
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Figure 1: Panel A shows the mitigation potential and cost for each methodology given by the IPCC
using their WGIII data after adjusting for the “no free lunches” calibration. Blue bars represent the
$0-$20 range, yellow is $20-$50, orange is $50-$100, red is $100-$200, and maroon is our new cost
bracket $400. Our curve fit is in grey. Panel B shows the fitted marginal abatement cost curves and
panel C shows the total cost to society. In panels B–C, solid lines correspond to 2030, while dashed lines
are cost curves in 2100, assuming an exogenous technological growth rate of 1.5% and no endogenous
technological growth.
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As another sensitivity test of our marginal abatement cost curve (MACC), we cut out the < $0203

abatement potential reported by the IPCC WGIII data and fit a curve to the nonzero cost options.204

The resulting cost figure is in Figure 2. Note that this marginal abatement cost curve (MACC) results205

in costs that are lower than the “no free lunches” calibration. Hence, we do not present Climate Asset206

Pricing model – AR6 runs with this cost curve specified, as the results will be simple interpolations207

between the main specification results and the “no free lunches” results.208

E.2 Limitations of our cost of abatement approach209

A major qualification to our results regards two assumptions in our cost of CO2 abatement parame-210

terization. The first major assumption is that abatement technologies are essentially instantly able to211

be deployed; we do not capture real-world inertia, represented in other energy systems IAMs, that cap212

the rate of decarbonization owing to the delayed availability of abatement technologies, stranded as-213

sets, limited construction times, and other factors (Ha-Duong et al., 1997; Richels and Blanford, 2008;214

Vogt-Schilb et al., 2018). This limitation, however, is common in other IAMs such as DICE (Nordhaus,215

2017) which have been widely used to study optimal climate-economic policy (Committee on Assessing216

Approaches to Updating the Social Cost of Carbon et al., 2017). Secondly, our MACC assumes that217

the sacrificed consumption to abate CO2 emissions does not feedback on other aspects of the economy,218

such as growth or productivity (Hogan and Jorgenson, 1991). Including a more sophisticated abate-219

ment cost parameterization (i.e., through representing investments in abatement capital explicitly) or220

the feedback of mitigation policy on growth would be an interesting direction for future work. These221

limitations provide important context for our results.222

E.3 Full derivation of total cost to society, Eqn. (2.10)223

First, assume a representative agent optimizes consumption c(⌧) such that dc(⌧)/d⌧ = �E(x(⌧)) =224

�E(⌧), where we have dropped the dependence of the emissions on mitigation action for clarity. Then225

by simple integration the consumption is given by226

c(⌧) = c̄�
Z ⌧

0
E(⇣)d⇣

| {z }
=:K(⌧)

, (E.1)

where c̄ > 0 is the baseline endowed consumption and K(⌧) is the cost to society in monetary units227

(i.e., dollars). Eqn. (E.1) would be correct if the government was to waste the entirety of the policy228

proceeds, given by E(⌧)⌧ . We instead assume that the proceeds are refunded in a lump sum (Mankiw229

et al., 2009), thus requiring an alteration to K(⌧) such that230

K(⌧) =

Z ⌧

0
E(⇣)d⇣ � E(⌧)⌧. (E.2)

The lump sum refund does not allow for CO2 tax proceeds to be used to decrease distortionary taxes231

unrelated to CO2 emissions; this would lower the net cost of CO2 even further (Goulder, 1995; Jorgen-232

son, 2013). Rewriting the emissions as E(⌧) = E0(1 � x(⌧)) where E0 is the (SSP–dependent) 2030233

emissions in GtCO2 yr�1, we have234

K(⌧) = E0

✓
⌧x(⌧)�

Z ⌧

0
x(⇣)d⇣

◆
. (E.3)

Note that E0 is the 2030 emissions for consistency with the cost data presented by WGIII. Now235

using (2.9) and its inverse in (E.3), carrying out the integral, and dividing by 2020 consumption results236
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Figure 2: Panel A shows the mitigation potential and cost for each methodology given by the IPCC
using their WGIII data after adjusting for the “infinite cost” calibration. Yellow bars are the $0-$20
range, orange is $20-$50, red is $50-$100, and maroon is $100-$200. Our curve fit is in grey. Panel B
shows the fitted marginal abatement cost curves and Panel C shows the total cost to society. In panels
B–C, solid lines correspond to 2030, while dashed lines are cost curves in 2100, assuming an exogenous
technological growth rate of 1.5% and no endogenous technological growth.
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Table 4: Values of fitting coe�cients ai and timescales ⌧i used in (F.2) (taken from Joos et al. (2013)),
as well as the best estimate and standard deviation of TCRE (taken from Intergovernmental Panel
on Climate Change (2021) and Damon Matthews et al. (2021)).

Fitting Coe�cient Timescale [years]

a0 0.2173 ⌧1 394.4

a1 0.2240 ⌧2 36.54

a2 0.2824 ⌧3 4.304

a3 0.2763

TCRE Parameters

�̄ = 0.45 �C (1000 GtCO2)
�1 �� = 0.18 �C (1000 GtCO2)

�1

f̄nc = 0.14 �fnc = 0.11

�̄eff = 0.52 �C (1000 GtCO2)
�1 ��eff

= 0.21 �C (1000 GtCO2)
�1

in the total cost to society in terms of fractional 2020 consumption loss, given by MACC(x), as237

MACC(x) =
E0⌧0
c2020

✓
e⇠x � 1

⇠
� x

◆
, (E.4)

where c2020 is the 2020 global consumption in billions of 2020 $USD. This completes our derivation.238

F Supplementary discussion: climate model239

In Table 5 we compare the average warming levels using our e↵ective TCRE approach and the weighted240

model averages presented by the IPCC in AR6.241

F.1 Carbon cycle model242

For a given emission time series the corresponding CO2 concentration time series can be found by243

convolving emissions with the impulse response function (IRF) of a pulse of CO2 emissions, denoted244

as I(t), such that245

CE(t) = E(t) ⇤ I(t). (F.1)

In Joos et al. (2013), it is shown that the IRF for a pulse of CO2 can be su�ciently represented by a246

superposition of exponentials, given by247

I(t) := a0 + a1e
�t/⌧1 + a2e

�t/⌧2 + a3e
�t/⌧3 . (F.2)

See Table 4 for the numerical values of the fitting coe�cients ai and timescales ⌧i in (F.2).248

The final component of the concentration time series accounts for pre-2020 CO2 that is present in the249

atmosphere when an agent begins emitting. This ensures that our carbon cycle model not only acts to250

take new CO2 out of the atmosphere, but continues to remove CO2 from past emissions. To account251

for this extra CO2 in the atmosphere, we make the assumption that the majority of CO2 before 2020252

is old, such that the time it has been in the atmosphere is much greater than ⌧2. This implies that253
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Table 5: Shown are the central estimate and the 5%-95% range of warming levels in three time periods,
for three emissions baselines, using our e↵ective TCRE approach and what is reported by the IPCC in
their Table 4.5.

Time period E↵ective TCRE range (�C) AR6 range (�C)

SSP2–4.5

Near-term: 2021–2040 1.5 (1.3 to 1.6) 1.5 (1.2 to 1.8)

Mid-term: 2041–2060 1.9 (1.5 to 2.4) 2.0 (1.6 to 2.5)

Long-term: 2081–2100 2.6 (1.7 to 3.5) 2.7 (2.1 to 3.5)

SSP3–7.0

Near-term: 2021–2040 1.5 (1.3 to 1.7) 1.5 (1.2 to 1.8)

Mid-term: 2041–2060 2.1 (1.6 to 2.7) 2.1 (1.7 to 2.6)

Long-term: 2081–2100 3.6 (2.1 to 5.1) 3.6 (2.8 to 4.6)

SSP5–8.5

Near-term: 2021–2040 1.5 (1.3 to 1.7) 1.6 (1.3 to 1.9)

Mid-term: 2041–2060 2.3 (1.6 to 2.9) 2.4 (1.9 to 3.0)

Long-term: 2081–2100 4.6 (2.4 to 6.8) 4.4 (3.3 to 5.7)

there is a constant fraction that remains, and a piece that is still decaying. Hence, the remaining CO2254

in the atmosphere is given by255

Cpre�2020(t) = C2020

 
a0 + a1e�t/⌧1

a0 + a1

!
, (F.3)

where C2020 = 420.87 ppm.1 Therefore, we can write the total carbon concentrations time series for a256

given individual as257

C(t) = C2020

 
a0 + a1e�t/⌧1

a0 + a1

!
+ E(t) ⇤ I(t). (F.4)

We note that (F.4) is used only to compute carbon concentrations as a result of optimal policy in258

Figures 5–8; we do not utilize carbon concentrations in our optimization routine, as our temperature259

parameterization relies on cumulative emissions only.260

G Supplementary discussion: discount rate calibration261

In Table 6 we show the term structures of the discount rates used in our featured runs. In Table 7 we262

show the ranges of parameters that are sampled in our ensemble runs.263
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Table 6: Term structures for each discount rate in featured CAP6 runs.

Discount rate [%] � [%] ⌘

1.5 0.1 0.93

2 0.2 1.20

2.5 0.5 1.42

3 0.8 1.53

Table 7: Ranges of values for each model parameter sampled in the ensemble runs.

Parameter Symbol Range

Risk aversion  3 – 15

Elasticity of intertemporal substitution � 0.55 – 1.08

Pure rate of time preference � 0.1% – 1.47%

Exogenous rate of technological growth '0 0% – 3%

Endogenous rate of technological growth '1 0% – 3%

Figure 3: Price paths for each damage function. All damage functions are sampled in panel A.
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H Isolating individual damage functions264

We isolate the influence of each damage function on carbon price paths in Figure 3 by isolating a single265

damage function and re-running our featured model runs. For comparison, we also provide our featured266

runs in panel 3A. Beginning with the statistically estimated damage function, we find that prices are267

higher in the near term in comparison to the other damage functions, with the exception of the 1.5%268

discount rate run. By comparison, running CAP6 with a convex damage function (i.e., the structural269

and meta-analytic damage functions) results in lower prices in the near term, with the exception of the270

1.5% discount rate runs. This shows that for su�ciently low discount rates, individual preferences can271

supercede the specifics of model components in ‘optimal’ policy considerations.272

I Regression analysis273

Regression coe�cients in Figure 8 are calculated by fitting a linear regression between each parameter274

value and carbon costs. The one exception is technological growth, which is time dependent and given275

by276

' := '0 + '1Xt. (I.1)

In 2100 and later, technological change is nonlinearly related to carbon costs. We therefore fit a277

quadratic to carbon costs as a function of total technological growth from 2100 on. Figures 4, 5, 6,278

and 7 show the intermediate step in computing the results shown in Figure 8.279

J Impact of Epstein-Zin risk aversion on prices280

Shown in Figure 8 is the influence of changing the Epstein-Zin risk aversion parameter,  , on CO2281

prices. Increasing (decreasing, resp.)  causes an increase (decrease, resp.) in the optimal carbon tax,282

consistent with other studies (e.g., Cai and Lontzek, 2019).283

K Including learning by doing284

We run CAP6 with learning by doing (LbD) included for both our main specification and “no free285

lunches” MACC in Figure 9. Note we use a 2% discount rate for each curve in Figure 9, '1 = 1.5%286

when LbD is enabled, and all other calibration parameters are the same as in our ‘main specification’287

runs above. We find that including LbD causes a relatively minor change in the the present-day carbon288

price for both MACC, and lowers the overall cost burden of the optimal abatement policy (i.e., the289

integrated cost over time). This is owed to prices declining faster as consumption is spent on mitigation,290

thus enabling more abatement in the near-term for cheaper costs. Furthermore, enabling LbD lowers291

the expected optimal warming by ⇠ 0.05 �C in 2100 for both MACCs. For the ‘main specification’292

MACC, warming in 2200 is lower by ⇠ 0.1 �C, whereas for the “no free lunches” MACC 2200 warming293

is lower by ⇠ 0.12 �C.294

A notable result from this exercise is that by including LbD e↵ects, the 2% discount rate policy295

with our ‘main specification’ cost curve stays below the 1.5 �C warming target in 2200; recall this296

threshold was exceeded when LbD was excluded. Hence, we can expect that the feasibility of reaching297

the warming targets set forth in Paris are highly sensitive to such outcomes; given that the rate of298

endogenous technological change is di�cult to empirically ground, this represents a significant source299

of uncertainty in policy projections and a target for future research.300

1Taken from https://keelingcurve.ucsd.edu/
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Figure 4: In each row, we plot the regression of each parameter against carbon costs in that period.
r2 values are given for each regression in the legend of each panel.
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Figure 5: In each row, we plot the regression of each parameter against temperature in that period.
r2 values are given for each regression in the legend of each panel.
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Figure 6: In each row, we plot the regression of each parameter against CO2 concentrations in that
period. r2 values are given for each regression in the legend of each panel.

19



Figure 7: In each row, we plot the regression of each parameter against economic damages in that
period. r2 values are given for each regression in the legend of each panel.
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Figure 8: Shown is the resulting price path for di↵erent choices of risk aversion, holding all other
model inputs constant in our preferred calibration.
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Figure 9: We show model output using our preferred 2% discount rate and toggling which MACC we
use (‘main’ or “no free lunches”) with or without learning by doing.

Note: Learning by doing implies that '1 = 1.5%; no learning by doing corresponds to '1 = 0%. All other

parameters are the same as in our main specification.
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